20 research outputs found

    Bad metallic transport in a cold atom Fermi-Hubbard system

    Full text link
    Charge transport is a revealing probe of the quantum properties of materials. Strong interactions can blur charge carriers resulting in a poorly understood "quantum soup". Here we study the conductivity of the Fermi-Hubbard model, a testing ground for strong interaction physics, in a clean quantum system - ultracold 6^6Li in a 2D optical lattice. We determine the charge diffusion constant in our system by measuring the relaxation of an imposed density modulation and modeling its decay hydrodynamically. The diffusion constant is converted to a resistivity, which exhibits a linear temperature dependence and exceeds the Mott-Ioffe-Regel limit, two characteristic signatures of a bad metal. The techniques we develop here may be applied to measurements of other transport quantities, including the optical conductivity and thermopower

    Antagonistic effects of nearest-neighbor repulsion on the superconducting pairing dynamics in the doped Mott insulator regime

    Get PDF
    The nearest-neighbor superexchange-mediated mechanism for d_{x^2-y^2}-wave superconductivity in the one-band Hubbard model faces the challenge that nearest-neighbor Coulomb repulsion can be larger than superexchange. To answer this question, we use cellular dynamical mean-field theory (CDMFT) with a continuous-time quantum Monte Carlo solver to determine the superconducting phase diagram as a function of temperature and doping for on-site repulsion U=9tU=9t and nearest-neighbor repulsion V=0,2t,4tV=0,2t,4t. In the underdoped regime, VV increases the CDMFT superconducting transition temperature TcdT_c^d even though it decreases the superconducting order parameter at low temperature for all dopings. However, VV decreases TcdT_c^d in the overdoped regime. We gain insight into these paradoxical results through a detailed study of the frequency dependence of the anomalous spectral function, extracted at finite temperature via the MaxEntAux method for analytic continuation. A systematic study of dynamical positive and negative contributions to pairing reveals that even though VV has a high-frequency depairing contribution, it also has a low frequency pairing contribution since it can reinforce superexchange through J=4t2/(UV)J=4t^2/(U-V). Retardation is thus crucial to understand pairing in doped Mott insulators, as suggested by previous zero-temperature studies. We also comment on the tendency to charge order for large VV and on the persistence of d-wave superconductivity over extended-ss or s+d-wave.Comment: Latex, 16 pages, 8 figure

    The convex hull for a random acceleration process in two dimensions

    Full text link
    We compute exactly the mean perimeter and the mean area of the convex hull of a random acceleration process of duration T in two dimensions. We use an exact mapping that relates, via Cauchy's formulae, the computation of the perimeter and the area of the convex hull of an arbitrary two dimensional stochastic process [x(t); y(t)] to the computation of the extreme value statistics of the associated one dimensional component process x(t). The latter can be computed exactly for the one dimensional random acceleration process even though the process in non-Markovian. Physically, our results are relevant in describing theaverage shape of a semi-flexible ideal polymer chain in two dimensions.Comment: 17 pages, 7 figures, accepeted in Journal of Physics A: Mathematical and Theoretica
    corecore