1,637 research outputs found
Dynamical Processing of Geophysical Signatures based on SPOT-5 Remote Sensing Imagery
An intelligent post-processing computational paradigm based on the use of dynamical filtering techniques modified to enhance the quality of reconstruction of geophysical signatures based on Spot-5 imagery is proposed. As a matter of particular study, a robust algorithm is reported for the analysis of the dynamic behavior of geophysical indexes extracted from the real-world remotely sensed scenes. The simulation results verify the efficiency of the approach as required for decision support in resources management
Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico
With an extension of >40 km2 the recently discovered Campeche cold-water coral province located at the northeastern rim of the Campeche Bank in the southern Gulf of Mexico belongs to the largest coherent cold-water coral areas discovered so far. The Campeche province consists of numerous 20 to 40 m high coral ridges that are developed in intermediate water depths of 500 to 600 m. The ridges are colonized by a vivid cold-water coral ecosystem that covers the upper flanks and summits. The rich coral community is dominated by the framework-building scleractinia Enallopsammia profunda and Lophelia pertusa while the associated benthic megafauna shows a rather scarce occurrence. The recent environmental setting is characterized by a high surface water production caused by a local upwelling center and a dynamic bottom water regime comprising vigorous bottom currents, internal waves and strong density contrasts, which all together provide optimal conditions for the growth of cold-water corals. The strong hydrodynamics – potentially supported by the diel vertical migration of zooplankton in the Campeche area – drive the delivering of food particles to the corals. The Campeche cold-water coral province is, thus, an excellent example highlighting the importance of the hydrographic setting in securing the food supply for the development of large and vivid cold-water coral ecosystems
Bacterial canker caused by Clavibacter michiganensis subsp. michiganensis in naranjilla in Ecuador
Bacterial canker of naranjilla or lulo (Solanum quitoense and Solanum pectinatum) is a new disease that could completely destroy naranjilla plants. The objectives of this study were to identify and characterize bacteria associated with canker wilt of naranjilla, and to determine the importance of wounds in the dissemination and transmission of bacterial canker.Symptoms of this disorder consist of dieback and leaves showing incurvature which was diagnostic to confirm bacterial wilt. Collapse of leaf panel on Nicotiana tabacum confirmed that the bacterium is phytopathogenic. This bacterium showed positive serological tests for Clavibacter michiganensis subsp. michiganensis, positive Gram reaction, growth on NCP 88, (ELISA+ GRAM+ NCP 88 +) as well as re-isolation through Koch postulates in Solanum cheesmanii. Aerial wounds appear to be the most important means for dissemination. More research is needed about the molecular characterization of the bacterium, and potential for the bacterium to be transmitted to other solanaceous crops.
Keywords: emerging infectious crop diseases, Solanum quitoense, Solanum pectinatum, Solanum cheesmanii, Solanum hirsutu
Cancro bacteriano asociado a Clavibacter michiganensis subsp. michiganensis en naranjilla en Ecuador
Bacterial canker of naranjilla or lulo (Solanum quitoense and Solanum pectinatum) is a new disease that could completely destroy naranjilla plants. The objectives of this study were to identify and characterize bacteria associated with canker wilt of naranjilla, and to determine the importance of wounds in the dissemination and transmission of bacterial canker.Symptoms of this disorder consist of dieback and leaves showing incurvature which was diagnostic to confirm bacterial wilt. Collapse of leaf panel on Nicotiana tabacum confirmed that the bacterium is phytopathogenic. This bacterium showed positive serological tests for Clavibacter michiganensis subsp. michiganensis, positive Gram reaction, growth on NCP 88, (ELISA+ GRAM+ NCP 88 +) as well as re-isolation through Koch postulates in Solanum cheesmanii. Aerial wounds appear to be the most important means for dissemination. More research is needed about the molecular characterization of the bacterium, and potential for the bacterium to be transmitted to other solanaceous crops. Keywords: emerging infectious crop diseases, Solanum quitoense, Solanum pectinatum, Solanum cheesmanii, Solanum hirsutumLa marchitez bacteriana o cancro bacteriano de la naranjilla o lulo (Solanum quitoense y Solanum pectinatum) es una enfermedad con potencial para destruir completamente el cultivo. Los objetivos de este estudio fueron identificar y caracterizar la bacteria o bacterias asociadas al cancro bacteriano en naranjilla y determinar la importancia de las heridas en su transmisión y diseminación. Los síntomas de esta enfermedad consistieron en muerte descendente, y la curvatura de la nervadura principal que constituye un síntoma diagnóstico para la confirmación de marchitez bacteriana. El colapso del panel intervenal (propio de respuesta de hipersensibilidad) en Nicotiana tabacum permitió la confirmación de que la bacteria aislada era patogénica. Esta cepa bacteriana presentó serología positiva para Clavibacter michiganensis subsp. michiganensis, reacción Gram positiva, crecimiento en medio de cultivo semi-selectivo NCP 88 (ELISA+ GRAM+ NCP 88 +), así como re-aislamiento a partir de tejido de Solanum cheesmanii previamente inoculado para cumplir con los postulados de Koch. Heridas aéreas desarrolladas durante la poda con equipo de poda no desinfectado parece ser la forma principal de diseminación. Estudios adicionales son necesarios dirigidos hacia la caracterización molecular de la bacteria, y el potencial de diseminación de la bacteria hacia otras solanáceas. Palabras clave: enfermedades infecciosas emergentes, Solanum quitoense, Solanum pectinatum, Solanum cheesmanii, Solanum hirsutu
Fluorescent labeling of micro/nanoplastics for biological applications with a focus on "true-to-life" tracking
Altres ajuts: acords transformatius de la UABThe increased environmental presence of micro-/nanoplastics (MNPLs) and the potential health risks associated with their exposure classify them as environmental pollutants with special environmental and health concerns. Consequently, there is an urgent need to investigate the potential risks associated with secondary MNPLs. In this context, using "true-to-life" MNPLs, resulting from the laboratory degradation of plastic goods, may be a sound approach. These non-commercial secondary MNPLs must be labeled to track their presence/journeys inside cells or organisms. Because the cell internalization of MNPLs is commonly analyzed using fluorescence techniques, the use of fluorescent dyes may be a sound method to label them. Five different compounds comprising two chemical dyes (Nile Red and Rhodamine-B), one optical brightener (Opticol), and two industrial dyes (Amarillo Luminoso and iDye PolyPink) were tested to determine their potential for such applications. Using commercial standards of polystyrene nanoplastics (PSNPLs) with an average size of 170 nm, different characteristics of the selected dyes such as the absence of impact on cell viability, specificity for plastic staining, no leaching, and lack of interference with other fluorochromes were analyzed. Based on the overall data obtained in the wide battery of assays performed, iDye PolyPink exhibited the most advantages, with respect to the other compounds, and was selected to effectively label "true-to-life" MNPLs. These advantages were confirmed using a proposed protocol, and labeling titanium-doped PETNPLs (obtained from the degradation of milk PET plastic bottles), as an example of "true-to-life" secondary NPLs. These results confirmed the usefulness of iDye PolyPink for labeling MNPLs and detecting cell internalization
Reference-grade genome and large linear plasmid of Streptomyces rimosus: pushing the limits of Nanopore sequencing
[EN] Streptomyces rimosus ATCC 10970 is the parental strain of industrial strains used for the commercial production of the important antibiotic oxytetracycline. As an actinobacterium with a large linear chromosome containing numerous long repeat regions, high GC content, and a single giant linear plasmid (GLP), these genomes are challenging to assemble. Here, we apply a hybrid sequencing approach relying on the combination of short- and long-read next-generation sequencing platforms and whole-genome restriction analysis by using pulsed-field gel electrophoresis (PFGE) to produce a high-quality reference genome for this biotechnologically important bacterium. By using PFGE to separate and isolate plasmid DNA from chromosomal DNA, we successfully sequenced the GLP using Nanopore data alone. Using this approach, we compared the sequence of GLP in the parent strain ATCC 10970 with those found in two semi-industrial progenitor strains, R6-500 and M4018. Sequencing of the GLP of these three S. rimosus strains shed light on several rearrangements accompanied by transposase genes, suggesting that transposases play an important role in plasmid and genome plasticity in S. rimosus. The polished annotation of secondary metabolite biosynthetic pathways compared to metabolite analysis in the ATCC 10970 strain also refined our knowledge of the secondary metabolite arsenal of these strains. The proposed methodology is highly applicable to a variety of sequencing projects, as evidenced by the reliable assemblies obtainedSIThis work was supported as part of the European project “Thoroughly Optimised Production Chassis for Advanced Pharmaceutical Ingredients” (grant ID 720793, European Union’s Horizon 2020 Research and Innovation Program) and by the Slovenian Research Agency (P4-0116, P4-0077, and P1-0034). L.S. is supported by a Slovenian Research Agency young researcher grant (35220200570), and M.T. is supported by grant C3330-19-952047 funded by Republic of Slovenia Ministry of Education, Science, and Sport and the European Union European Regional Development Fun
Modern rhodolith-dominated carbonates at Punta Chivato, Mexico
Rhodolith-dominated carbonate environments, characterized by high abundances of free-living coralline algae, have been described globally from a wide range of Recent and fossil shallow marine settings. In the present-day warm-temperate Gulf of California, Mexico, rhodolith-dominated systems are important contributors to carbonate production. One of the most prolific rhodolith factories is located on the Punta Chivato shelf, in the central Gulf of California, where due to a lack of input of terrigenous material from the arid hinterland, carbonate content averages 79%. Punta Chivato rhodoliths thrive above the shallow euphotic zone under normal saline, warm-temperate and meso- to eutrophic conditions. A detailed sedimentologic study combined with acoustic seafloor mapping indicates the presence of extensive rhodolith-dominated facies at subtidal water depth covering an area of \u3e17 km2. Additional facies, surrounding the rhodolith-dominated facies include a fine-grained molluscan, a transitional bivalve-rhodolith and a bivalve facies. While the Punta Chivato shelf yields average abundances of 38% rhodolith-derived coralline algal components in the gravel-sized sediment fraction, the rhodolith facies itself is characterized by more than 60% coralline algal components. Other important carbonate producers at Punta Chivato include bivalves (35%), bryozoa (11%) and gastropods (8%). The present study shows that acoustic sediment mapping yields highly resolved continuous coverage of the seafloor and can distinguish modern rhodolith facies from surrounding sediment. This has important implications for quantifying rhodolith-dominated settings globally, as well as for ecological and conservation studies. © Publications Scientifiques du Muséum national d\u27Histoire naturelle, Paris
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
- …