18 research outputs found

    Modelo de nucleación y crecimiento de capas nanoestructuradas de óxido de zinc sobre sustratos cerámicos con aplicación a materiales fotovoltaicos híbridos

    Full text link
    La tesis doctoral que se presenta, se basa en la obtención de células solares híbridas sobre sustrato cerámico. Para ello ha sido necesario durante la ejecución de la misma el estudio, experimentación, caracterización y optimización de cada una de las capas que la componen. Siendo estas capas: 1. Esmalte cerámico. Dicha capa desempeña la función de capa barrera entre la cerámica y el material fotovoltaico. En la tesis se ha desarrollado la formulación, caracterización y procesado del mismo. 2. Contacto trasero. El contacto trasero de la célula ha de ser un material conductor de la corriente eléctrica y que además presente un buen anclaje físico y químico con la cerámica, además de que su nivel de energía de Fermi sea el adecuado para la trasmisión de las cargas generadas en el material fotovoltaico y así poder recolectarlas en el circuito externo. 3. Material transportador de cargas. Se ha empleado ZnO nanoestructurado como transportador de cargas obtenido por vía electroquímica. El estudio realizado de esta capa ha sido el más exhaustivo, obteniendo los modelos de nucleación y crecimiento del mismo, así como el desarrollo de una novedosa técnica de electrodeposición que permite la obtención de nanoestruturas de ZnO con las propiedades óptimas para su funcionalidad. 4. Material fotovoltaico. Como material fotovoltaico se ha empleado una unión de sendos polímeros P3HT y PCBM, empleada en dispositivos poliméricos convencionales. 5. Capa de contacto delantero MoO3-Au.Reyes Tolosa, MD. (2012). Modelo de nucleación y crecimiento de capas nanoestructuradas de óxido de zinc sobre sustratos cerámicos con aplicación a materiales fotovoltaicos híbridos [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14725Palanci

    Propuesta de una metodología de evaluación del aprendizaje basada en las TIC

    Full text link
    [EN] Is vital for teachers to assess accurately the continuous learning of students, obtaining of this assessment is not just a rating of each one of the students, if not also monitor the student's learning, and can reinforce those topics that are necessary. To this end, a series of questions, each of the topics of theoretical, using an online tool, have been implemented specifically SOCRATIVE, which is a tool that incorporates the use of technology and is made available from the learning. Methodology highlights because it is an active and motivational methodology with the advantage of offering the results instantly and above all enable new possibilities in the learning process. In addition, at end of course, it is planned a survey of evaluation of the methodology in order to optimize its use in subsequent courses.[ES] Es de vital importancia para los docentes poder evaluar de forma precisa el aprendizaje continuo de los alumnos, obteniendo de esta evaluación no solo una calificación de cada uno de los alumnos, sino también un seguimiento del aprendizaje del alumno, pudiendo reforzar aquellos temas que sean necesarios. Para ello, se han implementado una serie de preguntas, correspondientes a cada uno de los temas teóricos, empleando una herramienta online, concretamente SOCRATIVE, siendo esta una herramienta en la que se incorpora el uso de la tecnología y se pone a disposición del aprendizaje. La metodología destaca por tratarse de una metodología activa y motivadora con la ventaja de ofrecer los resultados instantáneamente y sobretodo permitir nuevas posibilidades en el proceso de aprendizaje. Además, a final de curso, se ha previsto una encuesta de evaluación de la metodología con el fin de optimizar en cursos posteriores su uso.Reyes Tolosa, MD.; Sahuquillo Navarro, O. (2018). Propuesta de una metodología de evaluación del aprendizaje basada en las TIC. En IN-RED 2018. IV Congreso Nacional de Innovación Educativa y Docencia en Red. Editorial Universitat Politècnica de València. 691-702. https://doi.org/10.4995/INRED2018.2018.8622OCS69170

    Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition

    Get PDF
    Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion.Facultad de Ciencias Exacta

    ZnO Nanoestructured Layers Processing with Morphology Control by Pulsed Electrodeposition

    Full text link
    The fabrication of nanostructured ZnO thin films is a critic process for a lot of applications of this semiconductor material. The final properties of this film depend fundamentally of the morphology of the sintered layer. In this paper a process is presented for the fabrication of ZnO nanostructured layers with morphology control by pulsed electrodeposition over ITO. Process optimization is achieved by pulsed electrodeposition and results are assessed after a careful characterization of both morphology and electrical properties. SEM is used for nucleation analysis on pulsed deposited samples. Optical properties like transmission spectra and Indirect Optical Band Gap are used to evaluate the quality of the obtained ZnO structures.Reyes Tolosa, MD.; Orozco Messana, J.; Damonte ., LC.; Hernández Fenollosa, MDLÁ. (2011). ZnO Nanoestructured Layers Processing with Morphology Control by Pulsed Electrodeposition. Journal of The Electrochemical Society. 158(7):452-455. doi:10.1149/1.35930044524551587Fath, P., Nussbaumer, H., & Burkhardt, R. (2002). Industrial manufacturing of semitransparent crystalline silicon POWER solar cells. Solar Energy Materials and Solar Cells, 74(1-4), 127-131. doi:10.1016/s0927-0248(02)00056-9Bruton, T. . (2002). General trends about photovoltaics based on crystalline silicon. Solar Energy Materials and Solar Cells, 72(1-4), 3-10. doi:10.1016/s0927-0248(01)00145-3Geiger, P., Hahn, G., Fath, P., & Bucher, E. (2002). Comparing improved state-of-the-art to former EFG Si-ribbons with respect to solar cell processing and hydrogen passivation. Solar Energy Materials and Solar Cells, 72(1-4), 155-163. doi:10.1016/s0927-0248(01)00160-xDonderis, V., Orozco, J., Cembrero, J., Curiel-Esparza, J., Damonte, L. C., & Hernández-Fenollosa, M. A. (2010). Doped Nanostructured Zinc Oxide Films Grown by Electrodeposition. Journal of Nanoscience and Nanotechnology, 10(2), 1387-1392. doi:10.1166/jnn.2010.1869Xu, L., Guo, Y., Liao, Q., Zhang, J., & Xu, D. (2005). Morphological Control of ZnO Nanostructures by Electrodeposition. The Journal of Physical Chemistry B, 109(28), 13519-13522. doi:10.1021/jp051007bZ. Zhanxia, Z. Yan, Y. Huacong, and M. Zhongquan , INEC Nanoelectronics Conference 2008. IEEE InternationalDu, Y., Zhang, M.-S., Wu, J., Kang, L., Yang, S., Wu, P., & Yin, Z. (2003). Optical properties of SrTiO 3 thin films by pulsed laser deposition. Applied Physics A: Materials Science & Processing, 76(7), 1105-1108. doi:10.1007/s00339-002-1998-zNakajima, A., Sugita, Y., Kawamura, K., Tomita, H., & Yokoyama, N. (1996). Si Quantum Dot Formation with Low-Pressure Chemical Vapor Deposition. Japanese Journal of Applied Physics, 35(Part 2, No. 2B), L189-L191. doi:10.1143/jjap.35.l189Pauporté, T., & Lincot, D. (2000). Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide. Electrochimica Acta, 45(20), 3345-3353. doi:10.1016/s0013-4686(00)00405-9Könenkamp, R., Word, R. C., & Godinez, M. (2005). Ultraviolet Electroluminescence from ZnO/Polymer Heterojunction Light-Emitting Diodes. Nano Letters, 5(10), 2005-2008. doi:10.1021/nl051501rMarí, B., Manjón, F. J., Mollar, M., Cembrero, J., & Gómez, R. (2006). Photoluminescence of thermal-annealed nanocolumnar ZnO thin films grown by electrodeposition. Applied Surface Science, 252(8), 2826-2831. doi:10.1016/j.apsusc.2005.04.024Marí, B., Cembrero, J., Manjón, F. J., Mollar, M., & Gómez, R. (2005). Raman measurements on nanocolumnar ZnO crystals. physica status solidi (a), 202(8), 1602-1605. doi:10.1002/pssa.200461196Wang, Q., Wang, G., Jie, J., Han, X., Xu, B., & Hou, J. G. (2005). Annealing effect on optical properties of ZnO films fabricated by cathodic electrodeposition. Thin Solid Films, 492(1-2), 61-65. doi:10.1016/j.tsf.2005.06.046Marı́, B., Mollar, M., Mechkour, A., Hartiti, B., Perales, M., & Cembrero, J. (2004). Optical properties of nanocolumnar ZnO crystals. Microelectronics Journal, 35(1), 79-82. doi:10.1016/s0026-2692(03)00227-1Wang, J., Du, G., Zhang, Y., Zhao, B., Yang, X., & Liu, D. (2004). RETRACTED: Luminescence properties of ZnO films annealed in growth ambient and oxygen. Journal of Crystal Growth, 263(1-4), 269-272. doi:10.1016/j.jcrysgro.2003.11.059Leiter, F., Alves, H., Pfisterer, D., Romanov, N. G., Hofmann, D. M., & Meyer, B. K. (2003). Oxygen vacancies in ZnO. Physica B: Condensed Matter, 340-342, 201-204. doi:10.1016/j.physb.2003.09.031Pauporté, T., Bedioui, F., & Lincot, D. (2005). Nanostructured zinc oxide–chromophore hybrid films with multicolored electrochromic properties. J. Mater. Chem., 15(15), 1552-1559. doi:10.1039/b416419

    Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition

    Get PDF
    Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion.Facultad de Ciencias Exacta

    Influence of seed layer thickness on properties of electrodeposited ZnO nanostructured films

    Full text link
    [EN] The quality and properties of electrodeposited nanostructured ZnO films are improved when they are deposited on a crystal lattice-matching substrate. To this end, a highly conductive indium tin oxide substrate is covered with an interlayer of ZnO using direct-current magnetron sputtering. In this manuscript, we describe the effect of this interlayer on the morphological and optical properties of several nanostructured ZnO films grown by different electrodeposition methods. The thickness of the ZnO interlayer was varied starting from ultrathin layers of 10 nm all the way up to 230 nm as determined by ellipsonnetry. The structural and optical properties of the nanostructured ZnO films deposited on top of these interlayers were characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy and UV-visible spectroscopy. Optimum properties of the nanostructured ZnO films for application in thin-film optoelectronic devices are obtained when the ZnO interlayer has a thickness of approximately 45 nm. This is the case for all the electrodeposition methods used in this work.Reyes Tolosa, MD.; Alajami, M.; Montero Reguera, ÁE.; Damonte, L.; Hernández Fenollosa, MDLÁ. (2019). Influence of seed layer thickness on properties of electrodeposited ZnO nanostructured films. SN Applied Sciences. 1(10):1-9. https://doi.org/10.1007/s42452-019-1293-719110Marotti RE, Giorgi P, Machado G, Dalchiele EA (2006) Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Sol Energy Mater Sol Cells 90:2356–2361Marotti RE, Guerra DN, Bello C, Machado G (2004) Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential. Sol Energy Mater Sol Cells 82:85–103Jin ZC, Hamberg I, Grangvist CG (1988) Optical properties of sputter-deposited ZnO: Al thin films. J Appl Phys 64:5117–5131Chopra KL, Major S, Pandya DK (1983) Transparent conductors—a status review. Thin Solid Films 102:1–46Kiliç B, Wang L, Ozdemir O, Lu M, Tüzemen S (2013) One-dimensional (1D) ZnO nanowires dye sensitized solar cell. J Nanosci Nanotechnol 13:333–338Granqvist CG (2007) Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells 9:1529–1598Mallampati B, Nair SV, Ruda HE, Philipose U (2015) ZnO nanowire based photoconductor with high photoconductive gain. Mater Res Soc Symp Proc 1805:720–726Benlamri M, Bothe KM, Ma AM, Shoute G, Afshar A, Sharma H, Mohammadpour A, Gupta M, Cadien KC, Tsui YY, Shankar K, Barlage DW (2014) High-mobility solution-processed zinc oxide thin films on silicon nitride. Phys Status Solidi RRL 8:871–875Galstyan V, Comini E, Ponzoni A, Sberveglieri V, Sberveglieri G (2016) ZnO quasi-1D nanostructures: synthesis, modeling, and properties for applications in conductometric. Chem Sens 4:6–27Ayouchi R, Leinen D, Martin F, Gabas M, Dalchiele E, Ramos-Barrado JR (2003) Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis. Thin Solid Films 426:68–77Rahmane S, Aida MS, Chala A, Temam HB, Djouadi MA (2007) Elaboration of transparent undoped ZnO and Al-doped ZnO thin films by spray pyrolysis and their properties. Plasma Process Polym 4:356–358Zhu G, Zhou Y, Wang S, Yang R, Ding Y, Wang X, Bando Y, Wang ZL (2012) Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology 23:055604–055610Hossein A, Kar P, Farsinezhad S, Sharma H, Shankar K (2015) Effect of sol stabilizer on the structure and electronic properties of solution-processed ZnO thin films. RSC Adv 5:87007–87018Majumder SB, Jain M, Dobal PS, Katiyar RS (2003) Investigations on solution derived aluminium doped zinc oxide thin films. Mater Sci Eng 103:16–25Gao XD, Peng F, Li XM, Yu WD, Qiu JJ (2007) Growth of highly oriented ZnO films by the two-step electrodeposition technique. J Mater Sci 42:9638–9644Dalchiele EA, Giorgi P, Marotti RE, Martín F, Ramos-Barrado JR, Ayouci R, Leinen D (2001) Electrodeposition of ZnO Thin Films on n-Si (100). Sol Energy Mater Sol Cells 70:245–254Craciun V, Elders J, Gardeniev JGE, Boyd IW (1994) Characteristics of high quality ZnO thin films deposited by pulsed laser deposition. Appl Phys Lett 65:2963–2965Bang KH, Hwang DK, Myoung JM (2003) Effects of ZnO buffer layer thickness on properties of ZnO thin films deposited by radio-frequency magnetron sputtering. Appl Surf Sci 207:359–364Hayashi Y, Kondo K, Murai K, Moriga T, Nakabayashi I, Fukumoto H, Tominag K (2004) ZnO–SnO2 transparent conductive films deposited by opposed target sputtering system of ZnO and SnO2 targets. Vacuum 74:607–611Minami T, Nanto H, Takata S (1983) UV emission from sputtered zinc oxide thin films. Thin Solid Films 109:379–384Gu CD, Li J, Lian JS, Zheng GQ (2007) Electrochemical synthesis and optical properties of ZnO thin film on In2O3: Sn (ITO)-coated glass. Appl Surf Sci 253:7011–7015Korber C, Suffner J, Klein A (2010) Surface energy controlled preferential orientation of thin films. J Phys D Appl Phys 43:055301–055304Dadgour HF, Endo K, De VK, Banerjee K (2010) Grain-orientation induced work function variation in nanoscale metal-gate transistors; part I: modeling, analysis, and experimental validation. IEEE Trans Electron Devices 57:2504–2514Sadewasser S, Glatzel T, Schuler S, Nishiwaki S, Kaigawa R, Lux-Steiner MC (2003) Kelvin probe force microscopy for the nano scale characterization of chalcopyrite solar cell materials and devices. Thin Solid Films 257:431–432Boubenia S, Dahiya AS, Poulin-Vittrant G, Morini F, Nadaud K, Alquier DA (2017) Facile hydrothermal approach for the density tunable growth of ZnO nanowires and their electrical characterizations. Sci Rep 7:15187–15196Ghayour H, Rezaie HR, Mirdamadi S, Nourbakhsh AA (2011) The effect of seed layer thickness on alignment and morphology of ZnO nanorods. Vacuum 86:101–105Bae YS, Kim DC, Ahn CH, Kim JH, Cho HK (2010) Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures. Surf Interface Anal 42:978–982Donderis V, Hernández-Fenollosa MA, Damonte LC, Marí B, Cembrero J (2007) Enhancement of surface morphology and optical properties of nanocolumnar ZnO films. Superlattices Microstruct 42:461–467Chichibu SF, Yoshida T, Onuma T, Nakanishi H (2002) Helicon-wave-excited-plasma sputtering epitaxy of ZnO on sapphire (0001) substrates. J Appl Phys 91:874–877Bouderbala M, Hamzaoui S, Amrani B, Reshak AH, Adnane M, Sahraoui T, Zerdali M (2008) Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films. Phys B 403:3326–3330Kishimoto S, Yamamoto T, Nakagawa Y, Ikeda K, Makino H, Yamada T (2006) Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition. Superlattices Microstruct 39:306–313Suchea M, Christoulakis S, Katharakis M, Vidakis N, Koudoumas E (2009) Influence of thickness and growth temperature on the optical and electrical properties of ZnO thin films. Thin Solid Films 517:4303–4306Mridha S, Basak D (2007) Effect of thickness on the structural, electrical and optical properties of ZnO films. Mater Res Bull 42:875–882Reyes Tolosa MD, Orozco-Messana J, Lima ANC, Camaratta R, Pascual M, Hernandez-Fenollosa MA (2011) Electrochemical deposition mechanism for ZnO nanorods: diffusion coefficient and growth models. J Electrochem Soc 158:107–110Reyes Tolosa MD, Orozco-Messana J, Damonte LC, Hernandez-Fenollosa MA (2011) ZnO nanoestructured layers processing with morphology control by pulsed electrodeposition. J Electrochem Soc 158:452–455Laukaitis G, Lindroos S, Tamulevicius S, Leskela M (2001) Stress and morphological development of CdS and ZnS thin films during the SILAR growth on (1 0 0) GaAs. Appl Surf Sci 185:134–139Ludwig W, Ohm W, Correa-Hoyos JM, Zhao Y, Lux-Steiner MC, Gledhill S (2013) Electrodeposition parameters for ZnO nanorod arrays for photovoltaic applications. Phys Status Solidi A 210:1557–1563Chopra KL, Das SR (1983) Thin film solar cells. Springer, New YorkOhm W, Riedel W, Askünger Ü, Heinemann MD, Kaufmann CA, Lopez Garcia J, Izquierdo V, Fontané X, Goislard T, Lux-Steiner MC, Gledhill S (2015) An overview of technological aspects of Cu(In, Ga)Se2 solar cell architectures incorporating ZnO nanorod arrays. Phys Status Solidi A 212:76–87Wang Q, Wang G, Jie J, Han X, Xu B, Hou JG (2005) Annealing effect on optical properties of ZnO films fabricated by cathodic electrodeposition described. Thin Solid Films 492:61–65Tao Y, Fu M, Zhao A, He D, Wang Y (2010) The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method. J Alloys Compd 489:99–102El-Zahed H, El- Korashy A, Abdel Rahman M (2003) Effect of heat treatment on some of the optical parameters of Cu9Ge11Te80 films. Vacuum 68:19–27Kumar M, Sasikumar C (2014) Electrodeposition of nanostructured ZnO thin film. Am J Mater Sci Eng 23:18–23Wang J, Chen R, Xiang L, Komarneni S (2018) Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram Int 44:7357–737

    Electrochemical Deposition Mechanism for ZnO Nanorods: Diffusion Coefficient and Growth Models

    Full text link
    Fabrication of nanostructured ZnO thin films is a critical process for many applications based on semiconductor devices. So on understanding of the electrochemical deposition mechanism is also fundamental for knowing the optimal conditions on growth of ZnO nanorods by electrodeposition. In this paper the electrochemical mechanism for ZnO nanorods formation is studied. Results are based on the evolution of the diffusion coefficient using the Cotrell equation, and different growth models proposed by Scharifcker and Hills for nucleation and growth.Reyes Tolosa, MD.; Orozco Messana, J.; Lima, A.; Camaratta, R.; Pascual Guillamón, M.; Hernández Fenollosa, MDLÁ. (2011). Electrochemical Deposition Mechanism for ZnO Nanorods: Diffusion Coefficient and Growth Models. Journal of The Electrochemical Society. 158(11):107-110. doi:10.1149/0.020111jes1071101581

    Low cost hybrid solar cell integration on wall tiles

    Full text link
    On this paper the first Building Integrated Hybrid Photovoltaic (BIHPV) cell obtained on a commercial tile is presented. The experimental techniques used allow a future low cost development of these cells for its massive use on facades for buildings. The basic concept includes a metal projected layer as back contact with an electron injection layer of electrodeposited ZnO, an organic PBCBM/P3HT photovoltaic cell with a closing TCO thin film on top. Integration with the substrate problems have been solved and allow further work on cell performance and durability.Reyes Tolosa, MD.; Orozco Messana, J.; Hernández Fenollosa, MDLÁ.; Camaratta, R.; Niedersberg Correia, Á.; Bolink, HJ.; Soriano, A.... (2011). Low cost hybrid solar cell integration on wall tiles. ECS Transactions. 41(4):141-146. doi:10.1149/1.3628619S14114641

    Impact of interstitial lung disease on the survival of systemic sclerosis with pulmonary arterial hypertension

    Get PDF
    To assess severity markers and outcomes of patients with systemic sclerosis (SSc) with or without pulmonary arterial hypertension (PAH-SSc/non-PAH-SSc), and the impact of interstitial lung disease (ILD) on PAH-SSc. Non-PAH-SSc patients from the Spanish SSc registry and PAH-SSc patients from the Spanish PAH registry were included. A total of 364 PAH-SSc and 1589 non-PAH-SSc patients were included. PAH-SSc patients had worse NYHA-functional class (NYHA-FC), worse forced vital capacity (FVC) (81.2 ± 20.6% vs 93.6 ± 20.6%, P < 0.001), worse tricuspid annular plane systolic excursion (TAPSE) (17.4 ± 5.2 mm vs 19.9 ± 6.7 mm, P < 0.001), higher incidence of pericardial effusion (30% vs 5.2%, P < 0.001) and similar prevalence of ILD (41.8% vs. 44.9%). In individuals with PAH-SSc, ILD was associated with worse hemodynamics and pulmonary function tests (PFT). Up-front combination therapy was used in 59.8% and 61.7% of patients with and without ILD, respectively. Five-year transplant-free survival rate was 41.1% in PAH-SSc patients and 93.9% in non-PAH-SSc patients (P < 0.001). Global survival of PAH-SSc patients was not affected by ILD regardless its severity. The multivariate survival analysis in PAH-SSc patients confirmed age at diagnosis, worse NYHA-FC, increased PVR, reduced DLCO, and lower management with up-front combination therapy as major risk factors. In conclusion, in PAH-SSc cohort risk of death was greatly increased by clinical, PFT, and hemodynamic factors, whereas it was decreased by up-front combination therapy. Concomitant ILD worsened hemodynamics and PFT in PAH-SSc but not survival regardless of FVC impairment

    Impact of interstitial lung disease on the survival of systemic sclerosis with pulmonary arterial hypertension

    Get PDF
    To assess severity markers and outcomes of patients with systemic sclerosis (SSc) with or without pulmonary arterial hypertension (PAH-SSc/non-PAH-SSc), and the impact of interstitial lung disease (ILD) on PAH-SSc. Non-PAH-SSc patients from the Spanish SSc registry and PAH-SSc patients from the Spanish PAH registry were included. A total of 364 PAH-SSc and 1589 non-PAH-SSc patients were included. PAH-SSc patients had worse NYHA-functional class (NYHA-FC), worse forced vital capacity (FVC) (81.2 +/- 20.6% vs 93.6 +/- 20.6%, P < 0.001), worse tricuspid annular plane systolic excursion (TAPSE) (17.4 +/- 5.2 mm vs 19.9 +/- 6.7 mm, P < 0.001), higher incidence of pericardial effusion (30% vs 5.2%, P < 0.001) and similar prevalence of ILD (41.8% vs. 44.9%). In individuals with PAH-SSc, ILD was associated with worse hemodynamics and pulmonary function tests (PFT). Up-front combination therapy was used in 59.8% and 61.7% of patients with and without ILD, respectively. Five-year transplant-free survival rate was 41.1% in PAH-SSc patients and 93.9% in non-PAH-SSc patients (P < 0.001). Global survival of PAH-SSc patients was not affected by ILD regardless its severity. The multivariate survival analysis in PAH-SSc patients confirmed age at diagnosis, worse NYHA-FC, increased PVR, reduced DLCO, and lower management with up-front combination therapy as major risk factors. In conclusion, in PAH-SSc cohort risk of death was greatly increased by clinical, PFT, and hemodynamic factors, whereas it was decreased by up-front combination therapy. Concomitant ILD worsened hemodynamics and PFT in PAH-SSc but not survival regardless of FVC impairment
    corecore