10,064 research outputs found
Synchronization of Excitatory Neurons with Strongly Heterogeneous Phase Responses
In many real-world oscillator systems, the phase response curves are highly
heterogeneous. However, dynamics of heterogeneous oscillator networks has not
been seriously addressed. We propose a theoretical framework to analyze such a
system by dealing explicitly with the heterogeneous phase response curves. We
develop a novel method to solve the self-consistent equations for order
parameters by using formal complex-valued phase variables, and apply our theory
to networks of in vitro cortical neurons. We find a novel state transition that
is not observed in previous oscillator network models.Comment: 4 pages, 3 figure
A one-sided Prime Ideal Principle for noncommutative rings
Completely prime right ideals are introduced as a one-sided generalization of
the concept of a prime ideal in a commutative ring. Some of their basic
properties are investigated, pointing out both similarities and differences
between these right ideals and their commutative counterparts. We prove the
Completely Prime Ideal Principle, a theorem stating that right ideals that are
maximal in a specific sense must be completely prime. We offer a number of
applications of the Completely Prime Ideal Principle arising from many diverse
concepts in rings and modules. These applications show how completely prime
right ideals control the one-sided structure of a ring, and they recover
earlier theorems stating that certain noncommutative rings are domains (namely,
proper right PCI rings and rings with the right restricted minimum condition
that are not right artinian). In order to provide a deeper understanding of the
set of completely prime right ideals in a general ring, we study the special
subset of comonoform right ideals.Comment: 38 page
Are short-term variations in solar oscillation frequencies the signature of a second solar dynamo?
In addition to the well-known 11-year solar cycle, the Sun's magnetic
activity also shows significant variation on shorter time scales, e.g. between
one and two years. We observe a quasi-biennial (2-year) signal in the solar
p-mode oscillation frequencies, which are sensitive probes of the solar
interior. The signal is visible in Sun-as-a-star data observed by different
instruments and here we describe the results obtained using BiSON, GOLF, and
VIRGO data. Our results imply that the 2-year signal is susceptible to the
influence of the main 11-year solar cycle. However, the source of the signal
appears to be separate from that of the 11-year cycle. We speculate as to
whether it might be the signature of a second dynamo, located in the region of
near-surface rotational shear.Comment: 6 pages, 2 figures, proceedings for SOHO-24/GONG 2010 conference, to
be published in JPC
Onset of Phase Synchronization in Neurons Conneted via Chemical Synapses
We study the onset of synchronous states in realistic chaotic neurons coupled
by mutually inhibitory chemical synapses. For the realistic parameters, namely
the synaptic strength and the intrinsic current, this synapse introduces
non-coherences in the neuronal dynamics, yet allowing for chaotic phase
synchronization in a large range of parameters. As we increase the synaptic
strength, the neurons undergo to a periodic state, and no chaotic complete
synchronization is found.Comment: to appear in Int. J. Bif. Chao
Spin dynamics and antiferromagnetic order in PrBa2Cu4O8 studied by Cu nuclear respnance
Results of the nuclear resonance experiments for the planar Cu sites in
PrBa2Cu4O8 are presented. The NMR spectrum at 1.5 K in zero magnetic field
revealed an internal field of 6.1 T, providing evidence for an
antiferromagnetic order of the planar Cu spins. This confirms that the CuO2
planes are insulating, therefore, the metallic conduction in this material is
entirely due to the one-dimensional zigzag Cu2O2 chains. The results of the
spin-lattice relaxation rates measured by zero field NQR above 245 K in the
paramagnetic state are explained by the theory for a Heisenberg model on a
square lattice.Comment: 4 pages, 2 figure
One-dimensional hydrogen atom with minimal length uncertainty and maximal momentum
We present exact energy eigenvalues and eigenfunctions of the one-dimensional
hydrogen atom in the framework of the Generalized (Gravitational) Uncertainty
Principle (GUP). This form of GUP is consistent with various theories of
quantum gravity such as string theory, loop quantum gravity, black-hole
physics, and doubly special relativity and implies a minimal length uncertainty
and a maximal momentum. We show that the quantized energy spectrum exactly
agrees with the semiclassical results.Comment: 10 pages, 1 figur
MAARS: a novel high-content acquisition software for the analysis of mitotic defects in fission yeast
Faithful segregation of chromosomes during cell division relies on multiple processes such as chromosome attachment and correct spindle positioning. Yet mitotic progression is defined by multiple parameters, which need to be quantitatively evaluated. To study the spatiotemporal control of mitotic progression, we developed a high-content analysis (HCA) approach that combines automated fluorescence microscopy with real-time quantitative image analysis and allows the unbiased acquisition of multiparametric data at the single-cell level for hundreds of cells simultaneously. The Mitotic Analysis and Recording System (MAARS) provides automatic and quantitative single-cell analysis of mitotic progression on an open-source platform. It can be used to analyze specific characteristics such as cell shape, cell size, metaphase/anaphase delays, and mitotic abnormalities including spindle mispositioning, spindle elongation defects, and chromosome segregation defects. Using this HCA approach, we were able to visualize rare and unexpected events of error correction during anaphase in wild-type or mutant cells. Our study illustrates that such an expert system of mitotic progression is able to highlight the complexity of the mechanisms required to prevent chromosome loss during cell division
- …