1,228 research outputs found

    Quantifying the impact of key factors on the carbon mitigation potential of managed temperate forests

    Get PDF
    Background: Forests mitigate climate change by reducing atmospheric CO2-concentrations through the carbon sink in the forest and in wood products, and substitution effects when wood products replace carbon-intensive materials and fuels. Quantifying the carbon mitigation potential of forests is highly challenging due to the influence of multiple important factors such as forest age and type, climate change and associated natural disturbances, harvest intensities, wood usage patterns, salvage logging practices, and the carbon-intensity of substituted products. Here, we developed a framework to quantify the impact of these factors through factorial simulation experiments with an ecosystem model at the example of central European (Bavarian) forests. Results: Our simulations showed higher mitigation potentials of young forests compared to mature forests, and similar ones in broad-leaved and needle-leaved forests. Long-lived wood products significantly contributed to mitigation, particularly in needle-leaved forests due to their wood product portfolio, and increased material usage of wood showed considerable climate benefits. Consequently, the ongoing conversion of needle-leaved to more broad-leaved forests should be accompanied by the promotion of long-lived products from broad-leaved species to maintain the product sink. Climate change (especially increasing disturbances) and decarbonization were among the most critical factors influencing mitigation potentials and introduced substantial uncertainty. Nevertheless, until 2050 this uncertainty was narrow enough to derive robust findings. For instance, reducing harvest intensities enhanced the carbon sink in our simulations, but diminished substitution effects, leading to a decreased total mitigation potential until 2050. However, when considering longer time horizons (i.e. until 2100), substitution effects became low enough in our simulations due to expected decarbonization such that decreasing harvests often seemed the more favorable solution. Conclusion: Our results underscore the need to tailor mitigation strategies to the specific conditions of different forest sites. Furthermore, considering substitution effects, and thoroughly assessing the amount of avoided emissions by using wood products, is critical to determine mitigation potentials. While short-term recommendations are possible, we suggest risk diversification and methodologies like robust optimization to address increasing uncertainties from climate change and decarbonization paces past 2050. Finally, curbing emissions reduces the threat of climate change on forests, safeguarding their carbon sink and ecosystem services

    X-ray and FTIR \u3bc-CTs for morphological and chemical characterization of eco-sustainable insulating foams

    Get PDF
    Here it is reported a multidisciplinary approach based on tomography and infrared techniques applied to the characterization of tannin porous rigid foams, potentially usable as new insulating materials in green building technology. With conventional x-ray tomography it was possible to preliminary evaluate the homogeneity of the samples at low resolution, while then, thanks to the synchrotron source, it was possible to obtain more detailed information at a micro-scale level. At the same time chemical characterization was done through Fourier Transform infrared (FTIR) imaging. Conventionally, FTIR imaging is limited to a planar projection, not considering the 3D structure of the material. To avoid this limitation, a FTIR 3D-tomography setup was built and the foams characterized by a chemical point of view. The idea is to directly correlate these data with the 3D-structural information obtained with the x-ray computed tomography exploiting the synchrotron radiation as source, allowing a complete characterization of the material morphology and chemistry at the microscale

    Understanding the Polymerization of Polyfurfuryl Alcohol: Ring Opening and Diels-Alder Reactions

    Get PDF
    Polyfurfuryl alcohol (PFA) is one of the most intriguing polymers because, despite its easy polymerization in acid environment, its molecular structure is definitely not obvious. Many studies have been performed in recent decades, and every time, surprising aspects came out. With the present study, we aim to take advantage of all of the findings of previous investigations and exploit them for the interpretation of the completely cured PFA spectra registered with three of the most powerful techniques for the characterization of solid, insoluble polymers: Solid-State 13C-NMR, Attenuated Total Reflectance (ATR), Fourier Transform Infrared (FTIR) spectroscopy, and UV-resonant Raman spectroscopy at different excitation wavelengths, using both an UV laser source and UV synchrotron radiation. In addition, the foreseen structures were modeled and the corresponding 13C-NMR and FTIR spectra were simulated with first-principles and semi-empiric methods to evaluate their matching with experimental ones. Thanks to this multi-technique approach, based on complementary analytical tools and computational support, it was possible to conclude that, in addition to the major linear unconjugated polymerization, the PFA structure consists of Diels-Alder rearrangements occurring after the opening of some furanic units, while the terminal moieties of the chain involves \u3b3-lactone arrangements. The occurrence of head-head methylene ether bridges and free hydroxyl groups (from unreacted furfuryl alcohol, FA, or terminal chains) could be excluded, while the conjugated systems could be considered rather limited

    Dissociation of somatic growth, time of sexual maturity, and life expectancy by overexpression of an RGD-deficient IGFBP-2 variant in female transgenic mice

    Get PDF
    Impaired growth is often associated with an extension of lifespan. However, the negative correlation between somatic growth and life expectancy is only true within, but not between, species. This can be observed because smaller species have, as a rule, a shorter lifespan than larger species. In insects and worms, reduced reproductive development and increased fat storage are associated with prolonged lifespan. However, in mammals the relationship between the dynamics of reproductive development, fat metabolism, growth rate, and lifespan are less clear. To address this point, female transgenic mice that were overexpressing similar levels of either intact (D-mice) or mutant insulin-like growth factor-binding protein-2 (IGFBP-2) lacking the Arg-Gly-Asp (RGD) motif (E-mice) were investigated. Both lines of transgenic mice exhibited a similar degree of growth impairment (-9% and -10%) in comparison with wild-type controls (C-mice). While in D-mice, sexual maturation was found to be delayed and life expectancy was significantly increased in comparison with C-mice, these parameters were unaltered in E-mice in spite of their reduced growth rate. These observations indicate that the RGD-domain has a major influence on the pleiotropic effects of IGFBP-2 and suggest that somatic growth and time of sexual maturity or somatic growth and life expectancy are less closely related than thought previously

    Available and missing data to model impact of climate change on European forests

    Get PDF
    Climate change is expected to cause major changes in forest ecosystems during the 21st century and beyond. To assess forest impacts from climate change, the existing empirical information must be structured, harmonised and assimilated into a form suitable to develop and test state-of-the-art forest and ecosystem models. The combination of empirical data collected at large spatial and long temporal scales with suitable modelling approaches is key to understand forest dynamics under climate change. To facilitate data and model integration, we identified major climate change impacts observed on European forest functioning and summarised the data available for monitoring and predicting such impacts. Our analysis of c. 120 forest-related databases (including information from remote sensing, vegetation inventories, dendroecology, palaeoecology, eddy-flux sites, common garden experiments and genetic techniques) and 50 databases of environmental drivers highlights a substantial degree of data availability and accessibility. However, some critical variables relevant to predicting European forest responses to climate change are only available at relatively short time frames (up to 10-20 years), including intra-specific trait variability, defoliation patterns, tree mortality and recruitment. Moreover, we identified data gaps or lack of data integration particularly in variables related to local adaptation and phenotypic plasticity, dispersal capabilities and physiological responses. Overall, we conclude that forest data availability across Europe is improving, but further efforts are needed to integrate, harmonise and interpret this data (i.e. making data useable for non-experts). Continuation of existing monitoring and networks schemes together with the establishments of new networks to address data gaps is crucial to rigorously predict climate change impacts on European forests.Peer reviewe

    Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale

    Get PDF
    Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change. The set of models comprised eight DVMs at the stand scale, three at the landscape scale, and four typically applied at the continental to global scale. Some incorporate empirically derived mortality models, and others are based on experimental data, whereas still others are based on theoretical reasoning. Each DVM was run with at least two alternative mortality submodels. Model behavior was evaluated against empirical time series data, and then, the models were subjected to different scenarios of climate change. Most DVMs matched empirical data quite well, irrespective of the mortality submodel that was used. However, mortality submodels that performed in a very similar manner against past data often led to sharply different trajectories of forest dynamics under future climate change. Most DVMs featured high sensitivity to the mortality submodel, with deviations of basal area and stem numbers on the order of 10–40% per century under current climate and 20–170% under climate change. The sensitivity of a given DVM to scenarios of climate change, however, was typically lower by a factor of two to three. We conclude that (1) mortality is one of the most uncertain processes when it comes to assessing forest response to climate change, and (2) more data and a better process understanding of tree mortality are needed to improve the robustness of simulated future forest dynamics. Our study highlights that comparing several alternative mortality formulations in DVMs provides valuable insights into the effects of process uncertainties on simulated future forest dynamics

    Thinning Can Reduce Losses in Carbon Use Efficiency and Carbon Stocks in Managed Forests Under Warmer Climate

    Get PDF
    Forest carbon use efficiency (CUE, the ratio of net to gross primary productivity) represents the fraction of photosynthesis that is not used for plant respiration. Although important, it is often neglected in climate change impact analyses. Here we assess the potential impact of thinning on projected carbon cycle dynamics and implications for forest CUE and its components (i.e., gross and net primary productivity and plant respiration), as well as on forest biomass production. Using a detailed process-based forest ecosystem model forced by climate outputs of five Earth System Models under four representative climate scenarios, we investigate the sensitivity of the projected future changes in the autotrophic carbon budget of three representative European forests. We focus on changes in CUE and carbon stocks as a result of warming, rising atmospheric CO2 concentration, and forest thinning. Results show that autotrophic carbon sequestration decreases with forest development, and the decrease is faster with warming and in unthinned forests. This suggests that the combined impacts of climate change and changing CO2 concentrations lead the forests to grow faster, mature earlier, and also die younger. In addition, we show that under future climate conditions, forest thinning could mitigate the decrease in CUE, increase carbon allocation into more recalcitrant woody pools, and reduce physiological-climate-induced mortality risks. Altogether, our results show that thinning can improve the efficacy of forest-based mitigation strategies and should be carefully considered within a portfolio of mitigation options

    The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests

    Get PDF
    Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database (PROFOUND DB) provides a wide range of empirical data on European forests to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale. A particular advantage of this database is its wide coverage of multiple data sources at different hierarchical and temporal scales, together with environmental driving data as well as the latest climate scenarios. Specifically, the PROFOUND DB provides general site descriptions, soil, climate, CO2, nitrogen deposition, tree and forest stand level, and remote sensing data for nine contrasting forest stands distributed across Europe. Moreover, for a subset of five sites, time series of carbon fluxes, atmospheric heat conduction and soil water are also available. The climate and nitrogen deposition data contain several datasets for the historic period and a wide range of future climate change scenarios following the Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, RCP8.5). We also provide pre-industrial climate simulations that allow for model runs aimed at disentangling the contribution of climate change to observed forest productivity changes. The PROFOUND DB is available freely as a "SQLite" relational database or "ASCII" flat file version (at https://doi.org/10.5880/PIK.2020.006/; Reyer et al., 2020). The data policies of the individual contributing datasets are provided in the metadata of each data file. The PROFOUND DB can also be accessed via the ProfoundData R package (https://CRAN.R- project.org/package=ProfoundData; Silveyra Gonzalez et al., 2020), which provides basic functions to explore, plot and extract the data for model set-up, calibration and evaluation.Peer reviewe
    corecore