22 research outputs found

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    Can COBE see the shape of the universe?

    Full text link
    In recent years, the large angle COBE--DMR data have been used to place constraints on the size and shape of certain topologically compact models of the universe. Here we show that this approach does not work for generic compact models. In particular, we show that compact hyperbolic models do not suffer the same loss of large angle power seen in flat or spherical models. This follows from applying a topological theorem to show that generic hyperbolic three manifolds support long wavelength fluctuations, and by taking into account the dominant role played by the integrated Sachs-Wolfe effect in a hyperbolic universe.Comment: 16 Pages, 5 Figures. Version published in Phys. Rev.
    corecore