2 research outputs found

    Synchronization of geomagnetic and ionospheric disturbances over Kazan station

    No full text
    The phenomena which accompany synchronization of night-time ionospheric and geomagnetic disturbances in an ULF range with periods 35–50 min near the mid-latitude station Kazan during a global magnetically quiet period have been analyzed. The comparison between dynamic spectra and wavelet patterns of these disturbances has revealed that spectral features of simultaneous disturbances of the F2-layer critical frequency and H, D, Z geomagnetic field components are similar. By studying spectral features of the F2-layer critical frequency over Kazan and disturbances of the H and D geomagnetic field components at magnetic stations which differ from Kazan station in longitude and latitude, we have established that the disturbances considered belong to the class of fast magnetosonic waves. The analysis of solar wind parameters, interplanetary magnetic field (IMF), and values of the auroral index AL in the period under study has shown that this event is associated with IMF Bz component disturbances and occurs during substorm development

    Low-frequency oscillations while magnetic storms as a tool to determine the types of solar plasma flows

    No full text
    Comparison of wavelet spectrum (skeletons) local maxima for disturbed components of solar plasma flow parameters and geomagnetic field disturbances recorded along the meridional station chain during geomagnetic storm intervals is performed in the range of magnetohydrodynamic (MHD) waves. An algorithm for quantitative evaluation of analyzed skeletons consistency has been developed. It has been used to demonstrate the possibility of the type of solar wind plasma flow elaboration on unique spectral signs of Solar wind speed disturbances, density and interplanetary magnetic field. It is shown that the energy spectrum of oscillations for these parameters reflects the internal structure of the corresponding plasma formation. The skeletons application to the analysis of the interplanetary space main parameters made it possible to estimate the magnetosphere reaction time in geomagnetic field horizontal component oscillations at different latitudes on the disturbance. As a result, the distributed magnetosphere reaction over latitude was determined in the form of geomagnetic field oscillations on the disturbed solar flow parameters. It is shown that the dynamics of the components of the solar wind parameters disturbance spectra corresponding to plasma flows manifest themselves in the MHD spectra of high-latitude stations magnetograms and can be used as a diagnostic tool
    corecore