3 research outputs found

    Efficient Sketching Algorithm for Sparse Binary Data

    Full text link
    Recent advancement of the WWW, IOT, social network, e-commerce, etc. have generated a large volume of data. These datasets are mostly represented by high dimensional and sparse datasets. Many fundamental subroutines of common data analytic tasks such as clustering, classification, ranking, nearest neighbour search, etc. scale poorly with the dimension of the dataset. In this work, we address this problem and propose a sketching (alternatively, dimensionality reduction) algorithm -- \binsketch (Binary Data Sketch) -- for sparse binary datasets. \binsketch preserves the binary version of the dataset after sketching and maintains estimates for multiple similarity measures such as Jaccard, Cosine, Inner-Product similarities, and Hamming distance, on the same sketch. We present a theoretical analysis of our algorithm and complement it with extensive experimentation on several real-world datasets. We compare the performance of our algorithm with the state-of-the-art algorithms on the task of mean-square-error and ranking. Our proposed algorithm offers a comparable accuracy while suggesting a significant speedup in the dimensionality reduction time, with respect to the other candidate algorithms. Our proposal is simple, easy to implement, and therefore can be adopted in practice

    Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge

    No full text
    Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset
    corecore