10 research outputs found

    Multiscaling in passive scalar advection as stochastic shape dynamics

    Full text link
    The Kraichnan rapid advection model is recast as the stochastic dynamics of tracer trajectories. This framework replaces the random fields with a small set of stochastic ordinary differential equations. Multiscaling of correlation functions arises naturally as a consequence of the geometry described by the evolution of N trajectories. Scaling exponents and scaling structures are interpreted as excited states of the evolution operator. The trajectories become nearly deterministic in high dimensions allowing for perturbation theory in this limit. We calculate perturbatively the anomalous exponent of the third and fourth order correlation functions. The fourth order result agrees with previous calculations.Comment: 14 pages, LaTe

    Persistent spins in the linear diffusion approximation of phase ordering and zeros of stationary gaussian processes

    Full text link
    The fraction r(t) of spins which have never flipped up to time t is studied within a linear diffusion approximation to phase ordering. Numerical simulations show that, even in this simple context, r(t) decays with time like a power-law with a non-trival exponent θ\theta which depends on the space dimension. The local dynamics at a given point is a special case of a stationary gaussian process of known correlation function and the exponent θ\theta is shown to be determined by the asymptotic behavior of the probability distribution of intervals between consecutive zero-crossings of this process. An approximate way of computing this distribution is proposed, by taking the lengths of the intervals between successive zero-crossings as independent random variables. The approximation gives values of the exponent θ\theta in close agreement with the results of simulations.Comment: 10 pages, 2 postscript files. Submitted to PRL. Reference screwup correcte
    corecore