17 research outputs found

    A differential identity for Green functions

    Get PDF
    If P is a differential operator with constant coefficients, an identity is derived to calculate the action of exp(P) on the product of two functions. In many-body theory, P describes the interaction Hamiltonian and the identity yields a hierarchy of Green functions. The identity is first derived for scalar fields and the standard hierarchy is recovered. Then the case of fermions is considered and the identity is used to calculate the generating function for the Green functions of an electron system in a time-dependent external potential.Comment: 14 page

    The Hopf Algebra of Renormalization, Normal Coordinates and Kontsevich Deformation Quantization

    Full text link
    Using normal coordinates in a Poincar\'e-Birkhoff-Witt basis for the Hopf algebra of renormalization in perturbative quantum field theory, we investigate the relation between the twisted antipode axiom in that formalism, the Birkhoff algebraic decomposition and the universal formula of Kontsevich for quantum deformation.Comment: 21 pages, 15 figure

    Iterated Binomial Sums and their Associated Iterated Integrals

    Full text link
    We consider finite iterated generalized harmonic sums weighted by the binomial (2kk)\binom{2k}{k} in numerators and denominators. A large class of these functions emerges in the calculation of massive Feynman diagrams with local operator insertions starting at 3-loop order in the coupling constant and extends the classes of the nested harmonic, generalized harmonic and cyclotomic sums. The binomially weighted sums are associated by the Mellin transform to iterated integrals over square-root valued alphabets. The values of the sums for NN \rightarrow \infty and the iterated integrals at x=1x=1 lead to new constants, extending the set of special numbers given by the multiple zeta values, the cyclotomic zeta values and special constants which emerge in the limit NN \rightarrow \infty of generalized harmonic sums. We develop algorithms to obtain the Mellin representations of these sums in a systematic way. They are of importance for the derivation of the asymptotic expansion of these sums and their analytic continuation to NCN \in \mathbb{C}. The associated convolution relations are derived for real parameters and can therefore be used in a wider context, as e.g. for multi-scale processes. We also derive algorithms to transform iterated integrals over root-valued alphabets into binomial sums. Using generating functions we study a few aspects of infinite (inverse) binomial sums.Comment: 62 pages Latex, 1 style fil

    Exponential renormalization

    Full text link
    Moving beyond the classical additive and multiplicative approaches, we present an "exponential" method for perturbative renormalization. Using Dyson's identity for Green's functions as well as the link between the Faa di Bruno Hopf algebra and the Hopf algebras of Feynman graphs, its relation to the composition of formal power series is analyzed. Eventually, we argue that the new method has several attractive features and encompasses the BPHZ method. The latter can be seen as a special case of the new procedure for renormalization scheme maps with the Rota-Baxter property. To our best knowledge, although very natural from group-theoretical and physical points of view, several ideas introduced in the present paper seem to be new (besides the exponential method, let us mention the notions of counterfactors and of order n bare coupling constants).Comment: revised version; accepted for publication in Annales Henri Poincar

    Combinatorial Hopf algebras in quantum field theory I

    Full text link
    This manuscript stands at the interface between combinatorial Hopf algebra theory and renormalization theory. Its plan is as follows: Section 1 is the introduction, and contains as well an elementary invitation to the subject. The rest of part I, comprising Sections 2-6, is devoted to the basics of Hopf algebra theory and examples, in ascending level of complexity. Part II turns around the all-important Faa di Bruno Hopf algebra. Section 7 contains a first, direct approach to it. Section 8 gives applications of the Faa di Bruno algebra to quantum field theory and Lagrange reversion. Section 9 rederives the related Connes-Moscovici algebras. In Part III we turn to the Connes-Kreimer Hopf algebras of Feynman graphs and, more generally, to incidence bialgebras. In Section10 we describe the first. Then in Section11 we give a simple derivation of (the properly combinatorial part of) Zimmermann's cancellation-free method, in its original diagrammatic form. In Section 12 general incidence algebras are introduced, and the Faa di Bruno bialgebras are described as incidence bialgebras. In Section 13, deeper lore on Rota's incidence algebras allows us to reinterpret Connes-Kreimer algebras in terms of distributive lattices. Next, the general algebraic-combinatorial proof of the cancellation-free formula for antipodes is ascertained; this is the heart of the paper. The structure results for commutative Hopf algebras are found in Sections 14 and 15. An outlook section very briefly reviews the coalgebraic aspects of quantization and the Rota-Baxter map in renormalization.Comment: 94 pages, LaTeX figures, precisions made, typos corrected, more references adde
    corecore