36 research outputs found

    Attachment of Agrobacterium tumefaciens to carrot cells and Arabidopsis wound sites is correlated with the presence of a cell-associated, acidic polysaccharide.

    Get PDF
    An early step in crown gall tumor formation involves the attachment of Agrobacterium tumefaciens to host plant cells. A. tumefaciens C58::A205 (C58 attR) is a Tn3HoHo1 insertion mutant that was found to be avirulent on Bryophyllum daigremontiana and unable to attach to carrot suspension cells. The mutation mapped to an open reading frame encoding a putative protein of 247 amino acids which has significant homology to transacetylases from many bacteria. Biochemical analysis of polysaccharide extracts from wild-type strain C58 and the C58::A205 mutant showed that the latter was deficient in the production of a cell-associated polysaccharide. Anion-exchange chromatography followed by 1H nuclear magnetic resonance and gas chromatography-mass spectrometry analyses showed that the polysaccharide produced by strain C58 was an acetylated, acidic polysaccharide and that the polysaccharide preparation contained three sugars: glucose, glucosamine, and an unidentified deoxy-sugar. Application of the polysaccharide preparation from strain C58 to carrot suspension cells prior to inoculation with the bacteria effectively inhibited attachment of the bacteria to the carrot cells, whereas an identical preparation from strain C58::A205 had no inhibitory effect and did not contain the acidic polysaccharide. Similarly, preincubation of Arabidopsis thaliana root segments with the polysaccharide prevented attachment of strain C58 to that plant. This indicates that the acidic polysaccharide may play a role in the attachment of A. tumefaciens to host soma plant cells

    Development and Application of Pathovar-Specific Monoclonal Antibodies That Recognize the Lipopolysaccharide O Antigen and the Type IV Fimbriae of Xanthomonas hyacinthi

    No full text
    The objective of this study was to develop a specific immunological diagnostic assay for yellow disease in hyacinths, using monoclonal antibodies (MAbs). Mice were immunized with a crude cell wall preparation (shear fraction) from Xanthomonas hyacinthi and with purified type IV fimbriae. Hybridomas were screened for a positive reaction with X. hyacinthi cells or fimbriae and for a negative reaction with X. translucens pv. graminis or Erwinia carotovora subsp. carotovora. Nine MAbs recognized fimbrial epitopes, as shown by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and immunoelectron microscopy; however, three of these MAbs had weak cross-reactions with two X. translucens pathovars in immunoblotting experiments. Seven MAbs reacted with lipopolysaccharides and yielded a low-mobility ladder pattern on immunoblots. Subsequent analysis of MAb 2E5 showed that it specifically recognized an epitope on the O antigen, which was found to consist of rhamnose and fucose in a 2:1 molar ratio. The cross-reaction of MAb 2E5 with all X. hyacinthi strains tested showed that this O antigen is highly conserved within this species. MAb 1B10 also reacted with lipopolysaccharides. MAbs 2E5 and 1B10 were further tested in ELISA and immunoblotting experiments with cells and extracts from other pathogens. No cross-reaction was found with 27 other Xanthomonas pathovars tested or with 14 other bacterial species from other genera, such as Erwinia and Pseudomonas, indicating the high specificity of these antibodies. MAbs 2E5 and 1B10 were shown to be useful in ELISA for the detection of X. hyacinthi in infected hyacinths

    Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa.

    No full text

    Structural Characterization of a Flavonoid-Inducible Pseudomonas aeruginosa A-Band-Like O Antigen of Rhizobium sp. Strain NGR234, Required for the Formation of Nitrogen-Fixing Nodules

    No full text
    Rhizobium (Sinorhizobium) sp. strain NGR234 contains three replicons, the smallest of which (pNGR234a) carries most symbiotic genes, including those required for nodulation and lipo-chito-oligosaccharide (Nod factor) biosynthesis. Activation of nod gene expression depends on plant-derived flavonoids, NodD transcriptional activators, and nod box promoter elements. Nod boxes NB6 and NB7 delimit six different types of genes, one of which (fixF) is essential for the formation of effective nodules on Vigna unguiculata. In vegetative culture, wild-type NGR234 produces a distinct, flavonoid-inducible lipopolysaccharide (LPS) that is not produced by the mutant (NGRΩfixF); this LPS is also found in nitrogen-fixing bacteroids isolated from V. unguiculata infected with NGR234. Electron microscopy showed that peribacteroid membrane formation is perturbed in nodule cells infected by the fixF mutant. LPSs were purified from free-living NGR234 cultured in the presence of apigenin. Structural analyses showed that the polysaccharide portions of these LPSs are specialized, rhamnose-containing O antigens attached to a modified core-lipid A carrier. The primary sequence of the O antigen is [-3)-α-l-Rhap-(1,3)-α-l-Rhap-(1,2)-α-l-Rhap-(1-](n), and the LPS core region lacks the acidic sugars commonly associated with the antigenic outer core of LPS from noninduced cells. This rhamnan O antigen, which is absent from noninduced cells, has the same primary sequence as the A-band O antigen of Pseudomonas aeruginosa, except that it is composed of l-rhamnose rather than the d-rhamnose characteristic of the latter. It is noteworthy that A-band LPS is selectively maintained on the P. aeruginosa cell surface during chronic cystic fibrosis lung infection, where it is associated with an increased duration of infection
    corecore