25 research outputs found

    Reduced Apaf-1 expression in human cutaneous melanomas

    Get PDF
    Malignant melanoma is a life-threatening skin cancer due to its highly metastatic character and resistance to radio- and chemotherapy. It is believed that the ability to evade apoptosis is the key mechanism for the rapid growth of cancer cells. However, the exact mechanism for failure in the apoptotic pathway in melanoma cells is unclear. p53, the most frequently mutated tumour suppressor gene in human cancers, is a key apoptosis inducer. However, p53 mutation is only found in 15–20% of melanoma biopsies. Recently, it was found that Apaf-1, a downstream target of p53, is inactivated in metastatic melanoma. Specifically, loss of heterozygosity (LOH) of the Apaf-1 gene was found in 40% of metastatic melanoma. To determine if loss of Apaf-1 expression is indeed involved in melanoma progression, we employed the tissue microarray technology and examined Apaf-1 expression in 70 human primary malignant melanoma biopsies by immunohistochemistry. Our data showed that Apaf-1 expression is significantly reduced in melanoma cells compared with normal nevi (χ2=6.02, P=0.014). Our results also revealed that loss of Apaf-1 was not associated with the tumour thickness, ulceration or subtype, patient's gender, age and 5-year survival. In addition, our in vitro apoptosis assay revealed that overexpression of Apaf-1 can sensitise melanoma cells to anticancer drug treatment. Taken together, our data indicate that Apaf-1 expression is significantly reduced in human melanoma and that Apaf-1 may serve as a therapeutic target in melanoma

    Suppression of Mcl-1 via RNA interference sensitizes human hepatocellular carcinoma cells towards apoptosis induction

    Get PDF
    BACKGROUND: Hepatocelluar carcinoma (HCC) is one of the most common cancers worldwide and a major cause of cancer-related mortality. HCC is highly resistant to currently available chemotherapeutic drugs. Defects in apoptosis signaling contribute to this resistance. Myeloid cell leukemia-1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 protein family which interferes with mitochondrial activation. In a previous study we have shown that Mcl-1 is highly expressed in tissues of human HCC. In this study, we manipulated expression of the Mcl-1 protein in HCC cells by RNA interference and analyzed its impact on apoptosis sensitivity of HCC cells in vitro. METHODS: RNA interference was performed by transfecting siRNA to specifically knock down Mcl-1 expression in HCC cells. Mcl-1 expression was measured by quantitative real-time PCR and Western blot. Induction of apoptosis and caspase activity after treatment with chemotherapeutic drugs and different targeted therapies were measured by flow cytometry and fluorometric analysis, respectively. RESULTS: Here we demonstrate that Mcl-1 expressing HCC cell lines show low sensitivity towards treatment with a panel of chemotherapeutic drugs. However, treatment with the anthracycline derivative epirubicin resulted in comparatively high apoptosis rates in HCC cells. Inhibition of the kinase PI3K significantly increased apoptosis induction by chemotherapy. RNA interference efficiently downregulated Mcl-1 expression in HCC cells. Mcl-1 downregulation sensitized HCC cells to different chemotherapeutic agents. Sensitization was accompanied by profound activation of caspase-3 and -9. In addition, Mcl-1 downregulation also increased apoptosis rates after treatment with PI3K inhibitors and, to a lower extent, after treatment with mTOR, Raf I and VEGF/PDGF kinase inhibitors. TRAIL-induced apoptosis did not markedly respond to Mcl-1 knockdown. Additionally, knockdown of Mcl-1 efficiently enhanced apoptosis sensitivity towards combined treatment modalities: Mcl-1 knockdown significantly augmented apoptosis sensitivity of HCC cells towards chemotherapy combined with PI3K inhibition. CONCLUSION: Our data suggest that specific downregulation of Mcl-1 by RNA interference is a promising approach to sensitize HCC cells towards chemotherapy and molecularly targeted therapies

    Validation of C-reactive protein levels as a prognostic indicator for survival in a large cohort of pancreatic cancer patients

    No full text
    BACKGROUND: Recent evidence indicates that the host inflammatory response has an important role in the tumour progression. Elevated C-reactive protein (CRP) levels have been previously associated with poor prognosis in several cancer types including small-scale studies in pancreatic cancer (PC) patients. The purpose of the present study was to validate the prognostic impact of plasma CRP levels at date of diagnosis on cancer-specific survival (CSS) in a large cohort of PC patients. METHODS: Data from 474 consecutive patients with adenocarcinoma of the pancreas, treated between 2004 and 2012 at a single centre, were evaluated retrospectively. CSS was analysed using the Kaplan–Meier method. To evaluate the prognostic significance of plasma CRP levels, univariate and multivariate Cox analyses were applied. RESULTS: High plasma CRP levels at diagnosis were significantly associated with well-established prognostic factors, including high tumour stage and tumour grade and the administration of chemotherapy (P<0.05). In univariate analysis, we observed that a high plasma CRP level was a consistent factor for poor CSS in PC patients (hazard ratio (HR)=2.21; 95% confidence interval (CI)=1.68–2.92, P<0.001). In multivariate analysis, tumour stage, grade, administration of chemotherapy, a high neutrophil–lymphocyte ratio and the highest quartile of CRP levels (HR=1.60, 95% CI=1.16–2.21; P=0.005) were identified as independent prognostic factors in PC patients. CONCLUSION: In conclusion, we confirmed a significant association of elevated CRP levels with poor clinical outcome in PC patients. Our results indicate that the plasma CRP level might represent a useful marker for patient stratification in PC management
    corecore