3 research outputs found

    Adaptive mesh refinement and automatic remeshing in crystal plasticity finite element simulations

    No full text
    In finite element simulations dedicated to the modelling of microstructure evolution, the mesh has to be fine enough to: (i) accurately describe the geometry of the constituents; (ii) capture local strain gradients stemming from the heterogeneity in material properties. In this paper, 3D polycrystalline aggregates are discretized into unstructured meshes and a level set framework is used to represent the grain boundaries. The crystal plasticity finite element method is used to simulate the plastic deformation of these aggregates. A mesh sensitivity analysis based on the deformation energy distribution shows that the predictions are, on average, more sensitive near grain boundaries. An anisotropic mesh refinement strategy based on the level set description is introduced and it is shown that it offers a good compromise between accuracy requirements on the one hand and computation time on the other hand. As the aggregates deform, mesh distortion inevitably occurs and ultimately causes the breakdown of the simulations. An automatic remeshing tool is used to periodically reconstruct the mesh and appropriate transfer of state variables is performed. It is shown that the diffusion related to data transfer is not significant. Finally, remeshing is performed repeatedly in a highly resolved 500 grains polycrystal subjected to about 90% thickness reduction in rolling. The predicted texture is compared with the experimental data and with the predictions of a standard Taylor model

    Linking plastic deformation to recrystallization in metals using digital microstructures

    No full text
    Procedures for synthesizing digital polycrystalline microstructures are illustrated, from either 2D statistical data or 3D deterministic data. Finite element meshes representing the digital microstructures are generated using anisotropic and adaptive mesh refinement close to the grain boundaries. Digital mechanical testing based on crystal plasticity theory provides an estimate of the spatial distribution of strain energy within the polycrystalline aggregate. The latter quantity is used as an input for modelling subsequent static recrystallization, grain boundary motion being described within a level set framework. The kinetic law for interface motion accounts for both the stored strain energy and the grain boundary energy. The possibility to include nucleation events within the level set framework is illustrated, as well as the evolving topology of the grain boundary network. The recrystallization model is tested in different configurations and compared to the Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory.Anglai
    corecore