18 research outputs found

    Ray Tracing Methods for Correcting Chromatic Aberrations in Imaging Systems

    Get PDF
    The correction of chromatic aberrations is typically performed using aberration formulas or by using real ray tracing. While the use of aberration formulas might be effective for some simple optical systems, it has limitations for complex and fast systems. For this reason chromatic aberration correction is usually accomplished with real ray tracing. However, existing optimization tools in lens design software typically mix the correction of monochromatic and chromatic aberrations by construction of an error function that minimizes both aberrations at the same time. This mixing makes the correction of one aberration type dependent on the correction of the other aberration type. We show two methods to separate the chromatic aberrations correction of a lens system. In the first method we use forward and reverse ray tracing and fictitious nondispersive glasses, to cancel the monochromatic aberration content and allow the ray tracing optimization to focus mainly on the color correction. On the second method we provide the algorithm for an error function that separates aberrations. Furthermore, we also demonstrate how these ray tracing methods can be applied to athermalize an optical system. We are unaware that these simple but effective methods have been already discussed in detail by other authors

    A method for the design of unsymmetrical optical systems using freeform surfaces

    No full text
    A systematic method for the design of unsymmetrical optical systems is described. Freeform optical surfaces are constructed by superposition of a conic segment and a polynomial, and successfully applied to design relatively fast wide field-of-view optical systems.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Aspheric/freeform optical surface description for controlling illumination from point-like light sources

    No full text
    We present an optical surface in closed form that can be used to design lenses for controlling relative illumination on a target surface. The optical surface is constructed by rotation of the pedal curve to the ellipse about its minor axis. Three renditions of the surface are provided, namely as an expansion of a base surface, and as combinations of several base surfaces. Examples of the performance of the surfaces are presented for the case of a point light source. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Role of aberrations in the relative illumination of a lens system

    No full text
    Several factors impact the light irradiance and relative illumination produced by a lens system at its image plane. In addition to cosine-fourth-power radiometric law, image and pupil aberrations and light vignetting also count. We use an irradiance transport equation to derive a closed form solution that provides insight into how individual aberration terms affect the light irradiance and relative illumination. The theoretical results are in agreement with real ray tracing. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore