161 research outputs found

    On the total mean curvature of non-rigid surfaces

    Full text link
    Using Green's theorem we reduce the variation of the total mean curvature of a smooth surface in the Euclidean 3-space to a line integral of a special vector field and obtain the following well-known theorem as an immediate consequence: the total mean curvature of a closed smooth surface in the Euclidean 3-space is stationary under an infinitesimal flex.Comment: 4 page

    BRST approach to Lagrangian formulation for mixed-symmetry fermionic higher-spin fields

    Full text link
    We construct a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with the corresponding Young tableaux having two rows, on a basis of the BRST approach. Starting with a description of fermionic higher-spin fields in a flat space of any dimension in terms of an auxiliary Fock space, we realize a conversion of the initial operator constraint system (constructed with respect to the relations extracting irreducible Poincare-group representations) into a first-class constraint system. For this purpose, we find auxiliary representations of the constraint subsuperalgebra containing the subsystem of second-class constraints in terms of Verma modules. We propose a universal procedure of constructing gauge-invariant Lagrangians with reducible gauge symmetries describing the dynamics of both massless and massive fermionic fields of any spin. No off-shell constraints for the fields and gauge parameters are used from the very beginning. It is shown that the space of BRST cohomologies with a vanishing ghost number is determined only by the constraints corresponding to an irreducible Poincare-group representation. To illustrate the general construction, we obtain a Lagrangian description of fermionic fields with generalized spin (3/2,1/2) and (3/2,3/2) on a flat background containing the complete set of auxiliary fields and gauge symmetries.Comment: 41 pages, no figures, corrected typos, updated introduction, sections 5, 7.1, 7.2 with examples, conclusion with all basic results unchanged, corrected formulae (3.27), (7.138), (7.140), added dimensional reduction part with formulae (5.34)-(5.48), (7.8)-(7.10), (7.131)-(7.136), (7.143)-(7.164), added Refs. 52, 53, 54, examples for massive fields developed by 2 way

    Beam coupling in hybrid photorefractive inorganic-cholesteric liquid crystal cells: impact of optical rotation

    No full text
    We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. A cholesteric layer is placed between two inorganic substrates. One of the substrates is photorefractive (Ce:SBN). Weak and strong light beams are incident on the hybrid cell. The interfering light beams induce a periodic space-charge field in the photorefractive window. This penetrates into the cholesteric liquid crystal (LC), inducing a diffraction grating written on the LC director. In the theory, the flexoelectric mechanism for electric field-director coupling is more important than the LC static dielectric anisotropy coupling. The LC optics is described in the Bragg regime. Each beam induces two circular polarized waves propagating in the cholesteric cell with different velocities. The model thus includes optical rotation in the cholesteric LC. The incident light beam wavelength can fall above, below, or inside the cholesteric gap. The theory calculates the energy gain of the weak beam, as a result of its interaction with the pump beam within the diffraction grating. Theoretical results for exponential gain coefficients are compared with experimental results for hybrid cells filled with cholesteric mixture BL038/CB15 at different concentrations of chiral agent CB15. Reconciliation between theory and experiment requires the inclusion of a phenomenological multiplier in the magnitude of the director grating. This multiplier is cubic in the space-charge field, and we provide a justification of the q-dependence of the multiplier. Within this paradigm, we are able to fit theory to experimental data for cholesteric mixtures with different spectral position of cholesteric gap relative to the wavelength of incident beams, subject to the use of some fitting parameters

    GENERATION OF ELECTRON BEAMS IN MAGNETRON GUNS WITH SECONDARY EMISSION CATHODES OF A SMALL DIAMETER

    Get PDF
    This paper is concerned with investigations on electron beam generation in magnetron guns with cold secondary-emission metallic cathodes of a small diameter with a large aspect ratio. The parameters of electron beams are given as a function of electric and magnetic field values using different methods of voltage pulse formation for secondary-electron multiplication and beam generation

    GENERATION OF ELECTRON BEAMS IN MAGNETRON GUNS WITH SECONDARY EMISSION CATHODES OF A SMALL DIAMETER

    Get PDF
    This paper is concerned with investigations on electron beam generation in magnetron guns with cold secondary-emission metallic cathodes of a small diameter with a large aspect ratio. The parameters of electron beams are given as a function of electric and magnetic field values using different methods of voltage pulse formation for secondary-electron multiplication and beam generation

    Menelaus' theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy

    Full text link
    It is shown that the integrable discrete Schwarzian KP (dSKP) equation which constitutes an algebraic superposition formula associated with, for instance, the Schwarzian KP hierarchy, the classical Darboux transformation and quasi-conformal mappings encapsulates nothing but a fundamental theorem of ancient Greek geometry. Thus, it is demonstrated that the connection with Menelaus' theorem and, more generally, Clifford configurations renders the dSKP equation a natural object of inversive geometry on the plane. The geometric and algebraic integrability of dSKP lattices and their reductions to lattices of Menelaus-Darboux, Schwarzian KdV, Schwarzian Boussinesq and Schramm type is discussed. The dSKP and discrete Schwarzian Boussinesq equations are shown to represent discretizations of families of quasi-conformal mappings.Comment: 26 pages, 9 figure

    On the vibron dressing in the α\alpha--helicoidal macromolecular chains

    Full text link
    We present a study of the physical properties of the vibrational excitation in α\alpha--helicoidal macromolecular chains, caused by the interaction with acoustical and optical phonon modes. The influence of the temperature and the basic system parameters on the vibron dressing has been analyzed by employing the simple mean--field approach based on the variational extension of the Lang--Firsov unitary transformation. Applied approach predicts a region in system parameter space where one takes place an abrupt transition from partially dressed (light and mobile) to fully dressed (immobile) vibron states. We found that the boundary of this region depends on system temperature and type of bond among structural elements in the macromolecular chain.Comment: 22 pages, 12 figures, title changed, the interaction with optical phonon modes jointly with acoustical ones added, consideration significantly enlarged, references added, the paper develops the results of arxiv:1210.3918, accepted for publication in Chinese Physics

    Stability theorems in geometry and analysis

    No full text

    Fredericksz transition threshold in nematic liquid crystals filled with ferroelectric nano-particles

    No full text
    A key liquid crystalline property for electro-optic applications is the Frederiks threshold electric field. There has been recent experimental interest in liquid crystal-based colloidal suspensions in which the colloidal nanoparticles both possess a permanent electric polarization and provide strong director anchoring on the particle surface. Such suspensions are sometimes known as Filled Liquid Crystals. Our calculations suggest, in qualitative agreement with experiment, that filling the nematic liquid crystal with ferroelectric nanoparticles can significantly decrease the electric Frederiks transition threshold field
    corecore