25 research outputs found

    Bethe eigenvectors of higher transfer matrices

    Full text link
    We consider the XXX-type and Gaudin quantum integrable models associated with the Lie algebra glNgl_N. The models are defined on a tensor product irreducible glNgl_N-modules. For each model, there exist NN one-parameter families of commuting operators on the tensor product, called the transfer matrices. We show that the Bethe vectors for these models, given by the algebraic nested Bethe ansatz are eigenvectors of higher transfer matrices and compute the corresponding eigenvalues.Comment: 48 pages, amstex.tex (ver 2.2), misprints correcte

    Spaces of quasi-exponentials and representations of gl_N

    Full text link
    We consider the action of the Bethe algebra B_K on (\otimes_{s=1}^k L_{\lambda^{(s)}})_\lambda, the weight subspace of weight λ\lambda of the tensor product of k polynomial irreducible gl_N-modules with highest weights \lambda^{(1)},...,\lambda^{(k)}, respectively. The Bethe algebra depends on N complex numbers K=(K_1,...,K_N). Under the assumption that K_1,...,K_N are distinct, we prove that the image of B_K in the endomorphisms of (\otimes_{s=1}^k L_{\lambda^{(s)}})_\lambda is isomorphic to the algebra of functions on the intersection of k suitable Schubert cycles in the Grassmannian of N-dimensional spaces of quasi-exponentials with exponents K. We also prove that the B_K-module (\otimes_{s=1}^k L_{\lambda^{(s)}})_\lambda is isomorphic to the coregular representation of that algebra of functions. We present a Bethe ansatz construction identifying the eigenvectors of the Bethe algebra with points of that intersection of Schubert cycles.Comment: Latex, 29 page

    On the Bethe Ansatz for the Jaynes-Cummings-Gaudin model

    Get PDF
    We investigate the quantum Jaynes-Cummings model - a particular case of the Gaudin model with one of the spins being infinite. Starting from the Bethe equations we derive Baxter's equation and from it a closed set of equations for the eigenvalues of the commuting Hamiltonians. A scalar product in the separated variables representation is found for which the commuting Hamiltonians are Hermitian. In the semi classical limit the Bethe roots accumulate on very specific curves in the complex plane. We give the equation of these curves. They build up a system of cuts modeling the spectral curve as a two sheeted cover of the complex plane. Finally, we extend some of these results to the XXX Heisenberg spin chain.Comment: 16 page

    Highest coefficient of scalar products in SU(3)-invariant integrable models

    Full text link
    We study SU(3)-invariant integrable models solvable by nested algebraic Bethe ansatz. Scalar products of Bethe vectors in such models can be expressed in terms of a bilinear combination of their highest coefficients. We obtain various different representations for the highest coefficient in terms of sums over partitions. We also obtain multiple integral representations for the highest coefficient.Comment: 17 page

    A2(2)A_{2}^{(2)} Gaudin model and its associated Knizhnik-Zamolodchikov equation

    Full text link
    The semiclassical limit of the algebraic Bethe Ansatz for the Izergin-Korepin 19-vertex model is used to solve the theory of Gaudin models associated with the twisted A2(2)A_{2}^{(2)} R-matrix. We find the spectra and eigenvectors of the N−1N-1 independents Gaudin Hamiltonians. We also use the off-shell Bethe Ansatz method to show how the off-shell Gaudin equation solves the associated trigonometric system of Knizhnik-Zamolodchikov equations.Comment: 20 pages,no figure, typos corrected, LaTe

    osp(1∣2)osp(1|2) off-shell Bethe ansatz equation with boundary terms

    Full text link
    This work is concerned with the quasi-classical limit of the boundary quantum inverse scattering method for the osp(1∣2)osp(1|2) vertex model with diagonal KK-matrices. In this limit Gaudin's Hamiltonians with boundary terms are presented and diagonalized. Moreover, integral representations for correlation functions are realized to be solutions of the trigonometric Knizhnik-Zamoldchikov equations.Comment: 38 pages, minor revison, LaTe

    Manin matrices and Talalaev's formula

    Full text link
    We study special class of matrices with noncommutative entries and demonstrate their various applications in integrable systems theory. They appeared in Yu. Manin's works in 87-92 as linear homomorphisms between polynomial rings; more explicitly they read: 1) elements in the same column commute; 2) commutators of the cross terms are equal: [Mij,Mkl]=[Mkj,Mil][M_{ij}, M_{kl}]=[M_{kj}, M_{il}] (e.g. [M11,M22]=[M21,M12][M_{11}, M_{22}]=[M_{21}, M_{12}]). We claim that such matrices behave almost as well as matrices with commutative elements. Namely theorems of linear algebra (e.g., a natural definition of the determinant, the Cayley-Hamilton theorem, the Newton identities and so on and so forth) holds true for them. On the other hand, we remark that such matrices are somewhat ubiquitous in the theory of quantum integrability. For instance, Manin matrices (and their q-analogs) include matrices satisfying the Yang-Baxter relation "RTT=TTR" and the so--called Cartier-Foata matrices. Also, they enter Talalaev's hep-th/0404153 remarkable formulas: det(∂z−LGaudin(z))det(\partial_z-L_{Gaudin}(z)), det(1-e^{-\p}T_{Yangian}(z)) for the "quantum spectral curve", etc. We show that theorems of linear algebra, after being established for such matrices, have various applications to quantum integrable systems and Lie algebras, e.g in the construction of new generators in Z(U(gln^))Z(U(\hat{gl_n})) (and, in general, in the construction of quantum conservation laws), in the Knizhnik-Zamolodchikov equation, and in the problem of Wick ordering. We also discuss applications to the separation of variables problem, new Capelli identities and the Langlands correspondence.Comment: 40 pages, V2: exposition reorganized, some proofs added, misprints e.g. in Newton id-s fixed, normal ordering convention turned to standard one, refs. adde

    Darboux coordinates, Yang-Yang functional, and gauge theory

    Full text link
    The moduli space of SL(2) flat connections on a punctured Riemann surface with the fixed conjugacy classes of the monodromies around the punctures is endowed with a system of holomorphic Darboux coordinates, in which the generating function of the variety of SL(2)-opers is identified with the universal part of the effective twisted superpotential of the corresponding four dimensional N=2 supersymmetric theory subject to the two-dimensional Omega-deformation. This allows to give a definition of the Yang-Yang functionals for the quantum Hitchin system in terms of the classical geometry of the moduli space of local systems for the dual gauge group, and connect it to the instanton counting of the four dimensional gauge theories, in the rank one case.Comment: 25 pages, 11 figures, v1. in the proceedings of Cargese conference "String Theory: Formal Developments and Applications" (Jun 21-Jul 3, 2010); reported also at six other conferences in 2010, v2. references correcte

    Nested Bethe ansatz for `all' open spin chains with diagonal boundary conditions

    Full text link
    We present in an unified and detailed way the nested Bethe ansatz for open spin chains based on Y(gl(\fn)), Y(gl(\fm|\fn)), U_{q}(gl(\fn)) or U_{q}(gl(\fm|\fn)) (super)algebras, with arbitrary representations (i.e. `spins') on each site of the chain and diagonal boundary matrices (K^+(u),K^-(u)). The nested Bethe anstaz applies for a general K^-(u), but a particular form of the K^+(u) matrix. The construction extends and unifies the results already obtained for open spin chains based on fundamental representation and for some particular super-spin chains. We give the eigenvalues, Bethe equations and the form of the Bethe vectors for the corresponding models. The Bethe vectors are expressed using a trace formula.Comment: 40 pages; examples of Bethe vectors added; Bethe equations for U_q(gl(2/2)) added; misprints correcte

    Boundary quantum Knizhnik-Zamolodchikov equations and Bethe vectors

    Get PDF
    Solutions to boundary quantum Knizhnik-Zamolodchikov equations are constructed as bilateral sums involving "off-shell" Bethe vectors in case the reflection matrix is diagonal and only the 2-dimensional representation of Uq(sl(2)^)U_q(\hat{\frak{sl}(2)}) is involved. We also consider their rational and classical degenerations
    corecore