2,533 research outputs found
Extracting joint weak values with local, single-particle measurements
Weak measurement is a new technique which allows one to describe the
evolution of postselected quantum systems. It appears to be useful for
resolving a variety of thorny quantum paradoxes, particularly when used to
study properties of pairs of particles. Unfortunately, such nonlocal or joint
observables often prove difficult to measure weakly in practice (for instance,
in optics -- a common testing ground for this technique -- strong photon-photon
interactions would be needed). Here we derive a general, experimentally
feasible, method for extracting these values from correlations between
single-particle observables.Comment: 6 page
Nonlinear optics with less than one photon
We demonstrate suppression and enhancement of spontaneous parametric down-
conversion via quantum interference with two weak fields from a local
oscillator (LO). Pairs of LO photons are observed to upconvert with high
efficiency for appropriate phase settings, exhibiting an effective nonlinearity
enhanced by at least 10 orders of magnitude. This constitutes a two-photon
switch, and promises to be useful for a variety of nonlinear optical effects at
the quantum level.Comment: 8 pages, 5 figure
Inhibition of Food Intake by PACAP in the Hypothalamic Ventromedial Nuclei is Mediated by NMDA Receptors
Central injections of pituitary adenylate cyclase-activating polypeptide (PACAP) into the ventromedial nuclei (VMN) of the hypothalamus produce hypophagia that is dependent upon the PAC1 receptor; however, the signaling downstream of this receptor in the VMN is unknown. Though PACAP signaling has many targets, this neuropeptide has been shown to influence glutamate signaling in several brain regions through mechanisms involving NMDA receptor potentiation via activation of the Src family of protein tyrosine kinases. With this in mind, we examined the Src-NMDA receptor signaling pathway as a target for PACAP signaling in the VMN that may mediate its effects on feeding behavior. Under nocturnal feeding conditions, NMDA receptor antagonism prior to PACAP administration into the VMN attenuated PACAP-mediated decreases in feeding suggesting that glutamatergic signaling via NMDA receptors is necessary for PACAP-induced hypophagia. Furthermore, PACAP administration into the VMN resulted in increased tyrosine phosphorylation of the GluN2B subunit of the NMDA receptor, and inhibition of Src kinase activity also blocked the effects of PACAP administration into the VMN on feeding behavior. These results indicate that PACAP neurotransmission in the VMN likely augments glutamate signaling by potentiating NMDA receptors activity through the tyrosine phosphorylation events mediated by the Src kinase family, and modulation of NMDA receptor activity by PACAP in the hypothalamus may be a primary mechanism for its regulation of food intake
PEGylating a bacteriophage endolysin inhibits its bactericidal activity
Bacteriophage endolysins (lysins) bind to a cell wall substrate and cleave peptidoglycan, resulting in hypotonic lysis of the phage-infected bacteria. When purified lysins are added externally to Gram-positive bacteria they mediate rapid death by the same mechanism. For this reason, novel therapeutic strategies have been developed using such enzybiotics. However, like other proteins introduced into mammalian organisms, they are quickly cleared from systemic circulation. PEGylation has been used successfully to increase the in vivo half-life of many biological molecules and was therefore applied to Cpl-1, a lysin specific for S. pneumoniae. Cysteine-specific PEGylation with either PEG 10K or 40K was achieved on Cpl-1 mutants, each containing an additional cysteine residue at different locations To the best of our knowledge, this is the first report of the PEGylation of bacteriophage lysin. Compared to the native enzyme, none of the PEGylated conjugates retained significant in vitro anti-pneumococcal lytic activity that would have justified further in vivo studies. Since the anti-microbial activity of the mutant enzymes used in this study was not affected by the introduction of the cysteine residue, our results implied that the presence of the PEG molecule was responsible for the inhibition. As most endolysins exhibit a similar modular structure, we believe that our work emphasizes the inability to improve the in vivo half-life of this class of enzybiotics using a cysteine-specific PEGylation strategy
Spatio-Temporal Sentiment Hotspot Detection Using Geotagged Photos
We perform spatio-temporal analysis of public sentiment using geotagged photo
collections. We develop a deep learning-based classifier that predicts the
emotion conveyed by an image. This allows us to associate sentiment with place.
We perform spatial hotspot detection and show that different emotions have
distinct spatial distributions that match expectations. We also perform
temporal analysis using the capture time of the photos. Our spatio-temporal
hotspot detection correctly identifies emerging concentrations of specific
emotions and year-by-year analyses of select locations show there are strong
temporal correlations between the predicted emotions and known events.Comment: To appear in ACM SIGSPATIAL 201
Comment on "A linear optics implementation of weak values in Hardy's paradox"
A recent experimental proposal by Ahnert and Payne [S.E. Ahnert and M.C.
Payne, Phys. Rev. A 70, 042102 (2004)] outlines a method to measure the weak
value predictions of Aharonov in Hardy's paradox. This proposal contains flaws
such as the state preparation method and the procedure for carrying out the
requisite weak measurements. We identify previously published solutions to some
of the flaws.Comment: To be published in Physical Review
Efficient Toffoli Gates Using Qudits
The simplest decomposition of a Toffoli gate acting on three qubits requires
{\em five} 2-qubit gates. If we restrict ourselves to controlled-sign (or
controlled-NOT) gates this number climbs to six. We show that the number of
controlled-sign gates required to implement a Toffoli gate can be reduced to
just {\em three} if one of the three quantum systems has a third state that is
accessible during the computation, i.e. is actually a qutrit. Such a
requirement is not unreasonable or even atypical since we often artificially
enforce a qubit structure on multilevel quantums systems (eg. atoms, photonic
polarization and spatial modes). We explore the implementation of these
techniques in optical quantum processing and show that linear optical circuits
could operate with much higher probabilities of success
Experimental bound entanglement in a four-photon state
Entanglement [1, 2] enables powerful new quantum technologies [3-8], but in
real-world implementations, entangled states are often subject to decoherence
and preparation errors. Entanglement distillation [9, 10] can often counteract
these effects by converting imperfectly entangled states into a smaller number
of maximally entangled states. States that are entangled but cannot be
distilled are called bound entangled [11]. Bound entanglement is central to
many exciting theoretical results in quantum information processing [12-14],
but has thus far not been experimentally realized. A recent claim for
experimental bound entanglement is not supported by their data [15]. Here, we
consider a family of four-qubit Smolin states [16], focusing on a regime where
the bound entanglement is experimentally robust. We encode the state into the
polarization of four photons and show that our state exhibits both entanglement
and undistillability, the two defining properties of bound entanglement. We
then use our state to implement entanglement unlocking, a key feature of Smolin
states [16].Comment: 10 pages, 6 figures. For a simultaneously submitted related work see
arXiv:1005.196
Full characterization of a three-photon GHZ state using quantum state tomography
We have performed the first experimental tomographic reconstruction of a
three-photon polarization state. Quantum state tomography is a powerful tool
for fully describing the density matrix of a quantum system. We measured 64
three-photon polarization correlations and used a "maximum-likelihood"
reconstruction method to reconstruct the GHZ state. The entanglement class has
been characterized using an entanglement witness operator and the maximum
predicted values for the Mermin inequality was extracted.Comment: 3 pages, 3 figure
- âŠ