17 research outputs found

    The Gaussian Process Autoregressive Regression Model (GPAR)

    Get PDF
    Multi-output regression models must exploit dependencies between outputs to maximise predictive performance. The application of Gaussian processes (GPs) to this setting typically yields models that are computationally demanding and have limited representational power. We present the Gaussian Process Autoregressive Regression (GPAR) model, a scalable multi-output GP model that is able to capture nonlinear, possibly input-varying, dependencies between outputs in a simple and tractable way: the product rule is used to decompose the joint distribution over the outputs into a set of conditionals, each of which is modelled by a standard GP. GPAR's efficacy is demonstrated on a variety of synthetic and real-world problems, outperforming existing GP models and achieving state-of-the-art performance on established benchmarks

    Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes

    Get PDF
    The goal of this paper is to design image classification systems that, after an initial multi-task training phase, can automatically adapt to new tasks encountered at test time. We introduce a conditional neural process based approach to the multi-task classification setting for this purpose, and establish connections to the meta-learning and few-shot learning literature. The resulting approach, called CNAPs, comprises a classifier whose parameters are modulated by an adaptation network that takes the current task's dataset as input. We demonstrate that CNAPs achieves state-of-the-art results on the challenging Meta-Dataset benchmark indicating high-quality transfer-learning. We show that the approach is robust, avoiding both over-fitting in low-shot regimes and under-fitting in high-shot regimes. Timing experiments reveal that CNAPs is computationally efficient at test-time as it does not involve gradient based adaptation. Finally, we show that trained models are immediately deployable to continual learning and active learning where they can outperform existing approaches that do not leverage transfer learning

    Sim2Real for Environmental Neural Processes

    Full text link
    Machine learning (ML)-based weather models have recently undergone rapid improvements. These models are typically trained on gridded reanalysis data from numerical data assimilation systems. However, reanalysis data comes with limitations, such as assumptions about physical laws and low spatiotemporal resolution. The gap between reanalysis and reality has sparked growing interest in training ML models directly on observations such as weather stations. Modelling scattered and sparse environmental observations requires scalable and flexible ML architectures, one of which is the convolutional conditional neural process (ConvCNP). ConvCNPs can learn to condition on both gridded and off-the-grid context data to make uncertainty-aware predictions at target locations. However, the sparsity of real observations presents a challenge for data-hungry deep learning models like the ConvCNP. One potential solution is 'Sim2Real': pre-training on reanalysis and fine-tuning on observational data. We analyse Sim2Real with a ConvCNP trained to interpolate surface air temperature over Germany, using varying numbers of weather stations for fine-tuning. On held-out weather stations, Sim2Real training substantially outperforms the same model architecture trained only with reanalysis data or only with station data, showing that reanalysis data can serve as a stepping stone for learning from real observations. Sim2Real could thus enable more accurate models for weather prediction and climate monitoring.Comment: 4 pages, 3 figures, To be published in Tackling Climate Change with Machine Learning workshop at NeurIP

    Environmental Sensor Placement with Convolutional Gaussian Neural Processes

    Get PDF
    Environmental sensors are crucial for monitoring weather conditions and the impacts of climate change. However, it is challenging to maximise measurement informativeness and place sensors efficiently, particularly in remote regions like Antarctica. Probabilistic machine learning models can evaluate placement informativeness by predicting the uncertainty reduction provided by a new sensor. Gaussian process (GP) models are widely used for this purpose, but they struggle with capturing complex non-stationary behaviour and scaling to large datasets. This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues. A ConvGNP uses neural networks to parameterise a joint Gaussian distribution at arbitrary target locations, enabling flexibility and scalability. Using simulated surface air temperature anomaly over Antarctica as ground truth, the ConvGNP learns spatial and seasonal non-stationarities, outperforming a non-stationary GP baseline. In a simulated sensor placement experiment, the ConvGNP better predicts the performance boost obtained from new observations than GP baselines, leading to more informative sensor placements. We contrast our approach with physics-based sensor placement methods and propose future work towards an operational sensor placement recommendation system. This system could help to realise environmental digital twins that actively direct measurement sampling to improve the digital representation of reality.Comment: In review for the Climate Informatics 2023 special issue of Environmental Data Scienc

    Environmental sensor placement with convolutional Gaussian neural processes

    Get PDF
    Environmental sensors are crucial for monitoring weather conditions and the impacts of climate change. However, it is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica. Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty. Gaussian process (GP) models are widely used for this purpose, but they struggle with capturing complex non-stationary behaviour and scaling to large datasets. This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues. A ConvGNP uses neural networks to parameterise a joint Gaussian distribution at arbitrary target locations, enabling flexibility and scalability. Using simulated surface air temperature anomaly over Antarctica as training data, the ConvGNP learns spatial and seasonal non-stationarities, outperforming a non-stationary GP baseline. In a simulated sensor placement experiment, the ConvGNP better predicts the performance boost obtained from new observations than GP baselines, leading to more informative sensor placements. We contrast our approach with physics-based sensor placement methods and propose future steps towards an operational sensor placement recommendation system. Our work could help to realise environmental digital twins that actively direct measurement sampling to improve the digital representation of reality

    Relative sectional curvature in compact angled 2-complexes

    No full text
    We define the notion of relative sectional curvature for 2-complexes, and prove that a compact angled 2-complex that has negative sectional curvature relative to planar sections has coherent fundamental group. We analyze a certain type of 1-complex that we call flattenable graphs Gamma→ X for an compact angled 2-complex X, and show that if X has nonpositive sectional curvature, and if for every flattenable graph pi1 (Gamma) → pi1( X) is finitely presented, then X has coherent fundamental group. Finally we show that if X is a compact angled 2-complex with negative sectional curvature relative to pi-gons and planar sections then pi1(X) is coherent. Some results are provided which are useful for creating examples of 2-complexes with these properties, or to test a 2-complex for these properties

    Efficient Gaussian Neural Processes for Regression

    No full text
    Conditional Neural Processes (CNP; Garnelo et al., 2018) are an attractive family of meta-learning models which produce well-calibrated predictions, enable fast inference at test time, and are trainable via a simple maximum likelihood procedure. A limitation of CNPs is their inability to model dependencies in the outputs. This significantly hurts predictive performance and renders it impossible to draw coherent function samples, which limits the applicability of CNPs in down-stream applications and decision making. Neural Processes (NPs; Garnelo et al., 2018) attempt to alleviate this issue by using latent variables, relying on these to model output dependencies, but introduces difficulties stemming from approximate inference. One recent alternative (Bruinsma et al., 2021), which we refer to as the FullConvGNP, models dependencies in the predictions while still being trainable via exact maximum-likelihood. Unfortunately, the FullConvGNP relies on expensive 2D-dimensional convolutions, which limit its applicability to only one-dimensional data. In this work, we present an alternative way to model output dependencies which also lends itself maximum likelihood training but, unlike the FullConvGNP, can be scaled to two- and three-dimensional data. The proposed models exhibit good performance in synthetic experiments
    corecore