1 research outputs found

    The Berry-Keating Hamiltonian and the Local Riemann Hypothesis

    Full text link
    The local Riemann hypothesis states that the zeros of the Mellin transform of a harmonic-oscillator eigenfunction (on a real or p-adic configuration space) have real part 1/2. For the real case, we show that the imaginary parts of these zeros are the eigenvalues of the Berry-Keating hamiltonian H=(xp+px)/2 projected onto the subspace of oscillator eigenfunctions of lower level. This gives a spectral proof of the local Riemann hypothesis for the reals, in the spirit of the Hilbert-Polya conjecture. The p-adic case is also discussed.Comment: 9 pages, no figures; v2 included more mathematical background, v3 has minor edits for clarit
    corecore