259 research outputs found

    Selective phosphodiesterase inhibitors: a promising target for cognition enhancement

    Get PDF
    # The Author(s) 2008. This article is published with open access at Springerlink.com Rationale One of the major complaints most people face during aging is an impairment in cognitive functioning. This has a negative impact on the quality of daily life and is even more prominent in patients suffering from neurodegenerative and psychiatric disorders including Alzheimer’s disease, schizophrenia, and depression. So far, the majority of cognition enhancers are generally targeting one particular neurotransmitter system. However, recently phosphodiesterases (PDEs) have gained increased attention as a potential new target for cognition enhancement. Inhibition of PDEs increases the intracellular availability of the second messengers cGMP and/or cAMP. Objective The aim of this review was to provide an overvie

    Retrotransposons and the evolution of mammalian gene expression

    Full text link
    Transposable elements, and retroviral-like elements in particular, are a rich potential source of genetic variation within a host's genome. Many mutations of endogenous genes in phylogenetically diverse organisms are due to insertion of elements that affect gene expression by altering the normal pattern of regulation. While few such associations are known to have been maintained over time, two recently elucidated examples suggest transposable elements may have a significant impact in evolution of gene expression. The first example, concerning the mouse sex-limited protein ( Slp ), clearly establishes that ancient retroviral enhancer sequences now confer hormonal dependence on the adjacent gene. The second example shows that within the human amylase gene family, salivary specific expression has arisen due to inserted sequences, deriving perhaps from a conjunction of two retrotransposable elements.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42800/1/10709_2004_Article_BF00133720.pd

    Oxidation of Intermediates of the Tricarboxylic Acid Cycle by Extracts of Azotobacter Agile

    No full text
    • …
    corecore