20 research outputs found

    A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors

    Get PDF
    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency

    Study on Elastic Helical TDR Sensing Cable for Distributed Deformation Detection

    Get PDF
    In order to detect distributed ground surface deformation, an elastic helical structure Time Domain Reflectometry (TDR) sensing cable is shown in this paper. This special sensing cable consists of three parts: a silicone rubber rope in the center; a couple of parallel wires coiling around the rope; a silicone rubber pipe covering the sensing cable. By analyzing the relationship between the impedance and the structure of the sensing cable, the impedance model shows that the sensing cable impedance will increase when the cable is stretched. This specific characteristic is verified in the cable stretching experiment which is the base of TDR sensing technology. The TDR experiment shows that a positive reflected signal is created at the stretching deformation point on the sensing cable. The results show that the deformation section length and the stretching elongation will both affect the amplitude of the reflected signal. Finally, the deformation locating experiments show that the sensing cable can accurately detect the deformation point position on the sensing cable

    DA-Res2UNet: Explainable blood vessel segmentation from fundus images

    No full text
    Blood vessel segmentation in fundus images is necessary for the diagnosis of ophthalmic diseases. In recent years, deep learning has achieved eminent performance in blood vessel segmentation, and there still exist challenges to reduce misidentification and improve microvascular segmentation accuracy. One reason is that traditional Convolutional Neural Network (CNN) can not effectively extract multiscale information and discard the unnecessary information. Another reason is we can’t explain why some blood vessels fail to be identified. On the one hand, this paper proposes a Dual Attention Res2UNet (DA-Res2UNet) model. The DA-Res2UNet model uses Res2block rather than CNN to obtain more multiscale information and adds Dual Attention to help the model focus on important information and discard unnecessary information. On the other hand, the explainable method based on a pre-trained fundus image generator is adopted to explore how the model identifies blood vessels. We deduce several special situations that lead to the misidentification based on the model’s explanation and adjust the dataset for these special cases. The adjusted datasets significantly reduce the misidentification in the CHASE_DB1 dataset. Finally, the model trained by the adjusted datasets achieves the state-of-the-art F1-score of 81.88%, 82.77%, and 83.96% on the CHASE_DB1, DRIVE and STARE datasets, respectively

    Research on Methane Measurement and Interference Factors in Coal Mines

    No full text
    The detection of methane has always been an important part of coal mine safety. In order to improve the methane measurement accuracy in coal mines and to determine the influence of environmental interference factors on the measurement results, we designed a spherical, experimental chamber simulating the on-site environment of an underground coal mine containing methane, in which various environmental interference factors can be superimposed. The simulation chamber can generate a uniform and controllable dust environment, a controllable methane environment with concentrations below that which would trigger an alarm, controllable humidity, and environments characterized by other interference factors. Based on computational simulations of the experimental chamber with varying dust-particle-concentration distributions using a single particle size, an optimal design for the chamber has been realized in terms of the rapid mixing of dust and the flow field. Finally, we constructed an underground methane concentration measurement system for coal mines and assessed the influences of different dust concentrations and relative humidity values on the performance of methane measurements, providing a means for improving the measurement accuracy of underground coal mine, spectral, absorption-type methane sensors

    Study on an Online Detection Method for Ground Water Quality and Instrument Design

    No full text
    The online measurement of ground water quality, as one important area of water resource protection, can provide real-time measured water quality parameters and send out warning information in a timely manner when the water resource is polluted. Based on ultraviolet (UV) spectrophotometry, a remote online measurement method is proposed and used to measure the ground water quality parameters chemical oxygen demand (COD), total organic carbon (TOC), nitrate nitrogen (NO3−N), and turbidity (TURB). The principle of UV spectrophotometry and the data processing method are discussed in detail, the correlated mathematical modeling of COD and TOC is given, and a confirmatory experiment is carried out. Turbidity-compensated mathematical modeling is proposed to improve the COD measurement accuracy and a confirmatory experiment is finished with turbidity that ranges from 0 to 100 NTU (Nephelometric Turbidity Unit). The development of a measurement instrument to detect the ground water COD, TOC, NO3−N, and TURB is accomplished; the test experiments are completed according to the standard specification of China’s technical requirement for water quality online automatic monitoring of UV, and the absolute measuring errors of COD, TOC, and NO3−N are smaller than 5.0%, while that of TURB is smaller than 5.4%, which meets the requirements for the online measurement of ground water quality

    Hyperspectral Imaging Analysis for the Classification of Soil Types and the Determination of Soil Total Nitrogen

    No full text
    Soil is an important environment for crop growth. Quick and accurately access to soil nutrient content information is a prerequisite for scientific fertilization. In this work, hyperspectral imaging (HSI) technology was applied for the classification of soil types and the measurement of soil total nitrogen (TN) content. A total of 183 soil samples collected from Shangyu City (People’s Republic of China), were scanned by a near-infrared hyperspectral imaging system with a wavelength range of 874–1734 nm. The soil samples belonged to three major soil types typical of this area, including paddy soil, red soil and seashore saline soil. The successive projections algorithm (SPA) method was utilized to select effective wavelengths from the full spectrum. Pattern texture features (energy, contrast, homogeneity and entropy) were extracted from the gray-scale images at the effective wavelengths. The support vector machines (SVM) and partial least squares regression (PLSR) methods were used to establish classification and prediction models, respectively. The results showed that by using the combined data sets of effective wavelengths and texture features for modelling an optimal correct classification rate of 91.8%. could be achieved. The soil samples were first classified, then the local models were established for soil TN according to soil types, which achieved better prediction results than the general models. The overall results indicated that hyperspectral imaging technology could be used for soil type classification and soil TN determination, and data fusion combining spectral and image texture information showed advantages for the classification of soil types

    Using a Parallel Helical Sensing Cable for the Distributed Measurement of Ground Deformation

    No full text
    Surface and underground stretched deformation is one of the most important physical measurement quantities for geological-disaster monitoring. In this study, a parallel helical sensing cable (PHSC) based on the time–domain reflectometry (TDR) technique is proposed and used to monitor large ground stretched deformation. First, the PHSC structure and manufacturing process are introduced, and then, distributed capacitance, distributed inductance, and characteristic impedance were derived based on the proposed stretched-structure model. Next, the relationship between characteristic impedance and stretched deformation was found, and the principle of distributed deformation measurement based on the TDR technique and PHSC characteristic impedance was analyzed in detail. The function of the stretched deformation and characteristic impedance was obtained by curve fitting based on the theoretically calculated results. A laboratory calibration test was carried out by the designed tensile test platform. The results of multi-point positioning and the amount of stretched deformation are presented by the tensile test platform, multi-point positioning measurement absolute errors were less than 0.01 m, and the amount of stretched deformation measurement absolute errors were less than 3 mm, respectively. The measured results are in good agreement with the theoretically calculated results, which verify the correctness of theoretical derivation and show that a PHSC is very suitable for the distributed measurement of the ground stretched deformation

    Sensing Property Modeling for the Novel Horizontal-vertical Composite Underground Displacement Sensor

    No full text
    Due to invisibility and complexity of the underground displacement monitoring, there exit few practical monitoring sensors capable of monitoring the underground horizontal and vertical displacements simultaneously. A novel electromagnetic underground displacement sensor able to monitor both the horizontal and the vertical displacements was proposed in our previous studies and abbreviated as the H-V type sensor. Through comprehensive application of Hall sensing mechanism analysis, 3D magnetic field distribution solution to the permanent magnet, and multidimensional numerical integration method, a model called the Equivalent Magnetic Charge-Numerical Integration Model (EMC-NI) is presented in this paper and serves as the H-V type sensor’s Hall voltage measurement model. This model can quantitatively evaluate the complicated relationship among the sensor’s Hall voltage output, its measuring parameters (underground horizontal displacement, vertical displacement and tilt angle at different depth within the monitored soil rock mass) and morphological parameters (geometry, shape and property parameters for the sensor units). Comprehensive studies and comparisons have conducted between the experimentally measured and EMC-NI modeled Hall voltage under counterpart conditions, through which not only the model’s modeling effectiveness and calculation accuracy are objectively evaluated, but also some valuable theoretical support is provided for the sensor’ sensing properties evaluation, design optimization, and subsequent study of displacement parameter inversion approach
    corecore