43 research outputs found

    Short-term and medium-term clinical outcomes of laparoscopic-assisted and open surgery for colorectal cancer: a single center retrospective case-control study

    Get PDF
    BACKGROUND: Laparoscopic procedure is a rapid developed technique in colorectal surgery. In this investigation we aim at assessing the diversities of short-term and medium-term clinical outcomes of laparoscopic-assisted versus open surgery for colorectal cancer. METHODS: A total number of 519 patients with non-metastatic colorectal cancer were enrolled for this study. The patients underwent either laparoscopic-assisted surgery (LAP) (n = 254) or open surgery (OP) (n = 265). Surgical techniques, perioperative managements and clinical follow-ups were standardized. Short-term perioperative data and medium-term recurrence and survival were compared and analyzed between the two groups. RESULTS: There were no differences in perioperative parameters between the two groups except in regards to a trend of faster recovery in laparoscopic procedures. There was no statistically significant difference in postoperative complications, reoperation rate, or perioperative mortality. Statistically significant differences in a faster return of gastrointestinal function and shorter hospital stay were identified in favor of laparoscopic-assisted resection. In colon and rectal cancer cases separately, the overall survival, cancer-free survival and recurrence rate were similar in two groups. There was also no tendency of significant differences in overall survival, cancer-free survival and recurrence in stage I-II and stage III patients in two cancer categories between the two groups, respectively. pT, lymph node metastasis, and clinical stage were independent predictors of overall death risk, while pT, pN, lymph node metastasis and clinical stage were found to be the independent predictors of recurrence risk in enrolled patients database. CONCLUSIONS: Laparoscopic-assisted procedure has more benefits on postoperative recovery, while has the same effects on medium-term recurrence and survival compared with open surgery in the treatment of non-metastatic colorectal cancer

    Subcarrier multiplexing for high-speed optical transmission

    Get PDF
    ©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.The performance of high-speed digital fiber-optic transmission using subcarrier multiplexing (SCM) is investigated both analytically and numerically. In order to reduce the impact of fiber chromatic dispersion and increase bandwidth efficiency, optical single-sideband (OSSB) modulation was used. Because frequency spacing between adjacent subcarriers can be much narrower than in a conventional DWDM system, nonlinear crosstalk must be considered. Although chromatic dispersion is not a limiting factor in SCM systems because the data rate at each subcarrier is low, polarization mode dispersion (PMD) has a big impact on the system performance if radiofrequency (RF) phase detection is used in the receiver. In order to optimize the system performance, tradeoffs must be made between data rate per subcarrier, levels of modulation, channel spacing between subcarriers, optical power, and modulation indexes. A 10-Gb/s SCM test bed has been set up in which 4 x 2.5 Gb/s data streams are combined into one wavelength that occupies a 20-GHz optical bandwidth. OSSB modulation is used in the experiment. The measured results agree well with the analytical prediction

    10-Gb/s SCM fiber system using optical SSB modulation

    Get PDF
    ©2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.A 10-Gb/s subcarrier multiplexing long-haul optical system is reported. 4 x 2.5 Gb/s data streams are combined into one wavelength, which occupies a 20-GHz optical bandwidth, Optical single sideband is used to increase bandwidth efficiency and reduce dispersion penalty. The receiver sensitivity is calculated using a simplified receiver model with an optical preamplifier, The measured results agree well with the analytical prediction

    MYCBP2 expression correlated with inflammatory cell infiltration and prognosis immunotherapy in thyroid cancer patients

    Get PDF
    IntroductionImmune checkpoint inhibitors (ICIs) have shown promising results for the treatment of multiple cancers. ICIs and related therapies may also be useful for the treatment of thyroid cancer (TC). In TC, Myc binding protein 2 (MYCBP2) is correlated with inflammatory cell infiltration and cancer prognosis. However, the relationship between MYCBP2 expression and ICI efficacy in TC patients is unclear.MethodsWe downloaded data from two TC cohorts, including transcriptomic data and clinical prognosis data. The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was used to predict the efficacy of ICIs in TC patients. MCPcounter, xCell, and quanTIseq were used to calculate immune cell infiltration scores. Gene set enrichment analysis (GSEA) and single sample GSEA (ssGSEA) were used to evaluate signaling pathway scores. Immunohistochemical (IHC) analysis and clinical follow up was used to identify the MYCBP2 protein expression status in patients and associated with clinical outcome.ResultsA higher proportion of MYCBP2-high TC patients were predicted ICI responders than MYCBP2-low patients. MYCBP2-high patients also had significantly increased infiltration of CD8+ T cells, cytotoxic lymphocytes (CTLs), B cells, natural killer (NK) cells and dendritic cells (DC)s. Compared with MYCBP2-low patients, MYCBP2-high patients had higher expression of genes associated with B cells, CD8+ T cells, macrophages, plasmacytoid dendritic cells (pDCs), antigen processing and presentation, inflammatory stimulation, and interferon (IFN) responses. GSEA and ssGSEA also showed that MYCBP2-high patients had significantly increased activity of inflammatory factors and signaling pathways associated with immune responses.In addiation, Patients in our local cohort with high MYCBP2 expression always had a better prognosis and greater sensitivity to therapy while compared to patients with low MYCBP2 expression after six months clinic follow up.ConclusionsIn this study, we found that MYCBP2 may be a predictive biomarker for ICI efficacy in TC patients. High MYCBP2 expression was associated with significantly enriched immune cell infiltration. MYCBP2 may also be involved in the regulation of signaling pathways associated with anti-tumor immune responses or the production of inflammatory factors

    Laparoscopic and open resection for colorectal cancer: an evaluation of cellular immunity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colorectal cancer is one kind of frequent malignant tumors of the digestive tract which gets high morbidity and mortality allover the world. Despite the promising clinical results recently, less information is available regarding the perioperative immunological effects of laparoscopic surgery when compared with the open surgery. This study aimed to compare the cellular immune responses of patients who underwent laparoscopic(LCR) and open resections(OCR) for colorectal cancer.</p> <p>Methods</p> <p>Between Mar 2009 and Sep 2009, 35 patients with colorectal carcinoma underwent LCR by laparoscopic surgeon. These patients were compared with 33 cases underwent conventional OCR by colorectal surgeon. Clinical data about the patients were collected prospectively. Comparison of the operative details and postoperative outcomes between laparoscopic and open resection was performed. Peripheral venous blood samples from these 68 patients were taken prior to surgery as well as on postoperative days(POD) 1, 4 and 7. Cell counts of total white blood cells, neutrophils, lymphocyte subpopulations, natural killer(NK) cells as well as CRP were determined by blood counting instrument, flow cytometry and hematology analyzer.</p> <p>Results</p> <p>There was no difference in the age, gender and tumor status between the two groups. The operating time was a little longer in the laparoscopic group (<it>P </it>> 0.05), but the blood loss was less (<it>P </it>= 0.039). Patients with laparoscopic resection had earlier return of bowel function and earlier resumption of diet as well as shorter median hospital stay (<it>P </it>< 0.001). Compared with OCR group, cell numbers of total lymphocytes, CD4<sup>+</sup>T cells and CD8<sup>+</sup>T cells were significant more in LCR group (<it>P </it>< 0.05) on POD 4, while there was no difference in the CD45RO<sup>+</sup>T or NK cell numbers between the two groups. Cellular immune responds were similar between the two groups on POD1 and POD7.</p> <p>Conclusions</p> <p>Laparoscopic colorectal resection gets less surgery stress and short-term advantages compared with open resection. Cellular immune respond appears to be less affected by laparoscopic colorectal resection when compared with open resection.</p

    A SDN-Based Network Traffic Estimating Algorithm in Power Telecommunication Network

    No full text
    Most of network management tasks in traffic engineering such as traffic scheduling, path planning, both of them are required the accurate and fine-grained network traffic. However, it is difficult to capture and estimate the volume of network traffic due to its time-varying nature. In this paper, we study the network traffic estimation scheme to estimate the fine-grained network traffic. Firstly, the network traffic is constructed as a time series and the autoregressive moving average (ARMA) method is used to characterize and model network traffic. Secondly, in order to decrease the estimation errors of the ARMA model, we use the optimization theory to adjust the estimation results. We construct an objective function with constraints. We find that objective function is an NP-hard problem, then we introduce a heuristic algorithm to find the optimization results. Finally, to evaluate the performance of our proposed scheme, we construct a simulation platform and compare our scheme with that of the other methods in an SDN simulation platform. The simulation results indicate that our approach is effective and our method can reflect the network traffic characteristics

    Methodologies on designing a hybrid shared-mesh-protected WDM network with sparse wavelength conversion and regeneration

    No full text
    In a wavelength-routed WDM optical network, having regeneration and wavelength conversion at every node is not cost-effective. However, in a nation-wide backbone network, regeneration is required for some lightpaths. With shared-mesh protection, wavelength-conversion is helpful in increasing the wavelength sharing among protection paths therefore can improve resource-utilization. In this work we study the problem of selecting wavelength-conversion and regeneration sites in such a network. We show that the wavelength converter placement problem can be formulated as an integer linear program and propose several heuristics for solving the sparse wavelength conversion and regeneration problem

    Improved Mechanical Properties of Alumina Ceramics Using Plasma-Assisted Milling Technique

    No full text
    In order to improve the mechanical properties of alumina ceramics, dielectric barrier discharge plasma-assisted milling (DBDPM) was employed to activate alumina powder. The effect of the plasma-assisted milling technique on the grinding behavior of alumina powder, as well as the microstructure and properties of fabricated alumina ceramic, was investigated in detail. Attributed to the great thermal stress induced via plasma heating, DBDPM showed significantly higher grinding efficiency than the common vibratory milling technique. Moreover, the lattice distortion of alumina grains occurred with the application of plasma, leading to an improved sintering activity of the produced alumina powders. Therefore, compared with the common vibratory milling technique, the fabricated alumina ceramics exhibited smaller grain sizes and improved mechanical properties when using alumina powder produced via the DBDPM method as the starting material

    Genome-wide identification and characterization of Glutathione S-Transferases (GSTs) and their expression profile under abiotic stresses in tobacco (Nicotiana tabacum L.)

    No full text
    Abstract Background Glutathione S-transferases (GSTs) are large and multifunctional proteases that play an important role in detoxification, protection against biotic and abiotic stresses, and secondary metabolite transportation which is essential for plant growth and development. However, there is limited research on the identification and function of NtGSTs. Results This study uses K326 and other six tobacco varieties (Hongda, HG, GDH11, Va116, VG, and GDH88) as materials to conduct comprehensive genome-wide identification and functional characterization of the GST gene in tobacco. A total of 59 NtGSTs were identified and classified into seven subfamilies via the whole-genome sequence analysis, with the Tau type serving as the major subfamily. The NtGSTs in the same branch of the evolutionary tree had similar exon/intron structure and motif constitution. There were more than 42 collinear blocks between tobacco and pepper, tomato, and potato, indicating high homology conservation between them. Twelve segmental duplicated gene pairs and one tandem duplication may have had a substantial impact on the evolution and expansion of the tobacco GST gene family. The RT-qPCR results showed that the expression patterns of NtGSTs varied significantly among tissues, varieties, and multiple abiotic stresses, suggesting that NtGST genes may widely respond to various abiotic stresses and hormones in tobacco, including NtGSTF4, NtGSTL1, NtGSTZ1, and NtGSTU40. Conclusions This study provides a comprehensive analysis of the NtGST gene family, including structures and functions. Many NtGSTs play a critical regulatory role in tobacco growth and development, and responses to abiotic stresses. These findings offer novel and valuable insights for understanding the biological function of NtGSTs and the reference materials for cultivating highly resistant varieties and enhancing the yield and quality of crops

    Requirement of PEA3 for transcriptional activation of FAK gene in tumor metastasis.

    Get PDF
    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase critically involved in cancer metastasis. We found an elevation of FAK expression in highly metastatic melanoma B16F10 cells compared with its less metastatic partner B16F1 cells. Down-regulation of the FAK expression by either small interfering RNA or dominant negative FAK (FAK Related Non-Kinase, FRNK) inhibited the B16F10 cell migration in vitro and invasiveness in vivo. The mechanism by which FAK activity is up-regulated in highly metastatic cells remains unclear. In this study, we reported for the first time that one of the Est family proteins, PEA3, is able to transactivate FAK expression through binding to the promoter region of FAK. We identified a PEA3-binding site between nucleotides -170 and +43 in the FAK promoter that was critical for the responsiveness to PEA3. A stronger affinity of PEA3 to this region contributed to the elevation of FAK expression in B16F10 cells. Both in vitro and in vivo knockdown of PEA3 gene successfully mimicked the cell migration and invasiveness as that induced by FAK down-regulation. The activation of the well-known upstream of PEA3, such as epidermal growth factor, JNK, and ERK can also induce FAK expression. Furthermore, in the metastatic human clinic tumor specimens from the patients with human primary oral squamous cell carcinoma, we observed a strong positive correlation among PEA3, FAK, and carcinoma metastasis. Taking together, we hypothesized that PEA3 might play an essential role in the activation of the FAK gene during tumor metastasis
    corecore