9 research outputs found
Biodegradable Natural Rubber Based on Novel Double Dynamic Covalent Cross-Linking
In this paper, biodegradable epoxidized natural rubber containing cyclic carbonate groups (CNR) was prepared by the reaction between epoxidized natural rubber (ENR) and carbon dioxide. Dynamic disulfide bonds and a boronic ester structure were successfully constructed and then the cross-linking network was formed by the thermally initiated “click” reaction between thiol groups of the cross-linker and the residual epoxy groups of ENR. As a result of the exquisite double dynamic covalent structure, the material exhibits high self-healing efficiency. Moreover, by virtue of the cyclic carbonate structure of the CNR, the natural rubber was confirmed to be biodegradable according to the biodegradable measurement. To the best of our knowledge, natural rubber with biodegradable and self-healing characteristics was obtained for the first time
Synthesis of PNIPAAm-g-P4VP Microgel as Draw Agent in Forward Osmosis by RAFT Polymerization and Reverse Suspension Polymerization to Improve Water Flux
Microgels have unique and versatile properties allowing their use in forward osmosis areas as a draw agent. In this contribution, poly(4-vinylpyridine) (P4VP) was synthesized via RAFT polymerization and then grafted to a poly(N-Isopropylacrylamide) (PNIPAAm) crosslinking network by reverse suspension polymerization. P4VP was successfully obtained by the quasiliving polymerization with the result of nuclear magnetic resonance and gel permeation chromatography characterization. The particle size and particle size distribution of the PNIPAAm-g-P4VP microgels containing 0, 5, 10, 15 and 20 wt% P4VP were measured by means of a laser particle size analyzer. It was found that all the microgels were of micrometer scale and the particle size was increased with the P4VP load. Inter/intra-molecular-specific interactions, i.e., hydrogen bond interactions were then investigated by Fourier infrared spectroscopy. In addition, the water flux measurements showed that all the PNIPAAm-g-P4VP microgels can draw water more effectively than a blank PNIPAAm microgel. For the copolymer microgel incorporating 20 wt% P4VP, the water flux was measured to be 7.48 L∙m−2∙h−1
Molecular Dynamic and Dissipative Particle Dynamic Simulation on the Miscibility of NR/CR Blends
Natural rubber (NR) exhibits good elasticity, flexural resistance, wear resistance, and excellent mechanical properties, and it has been widely used in aerospace, transportation, medical, and health fields. For NR, however, the resistance to thermal-oxidation and ozone aging is fairly poor. Although aging properties of NR can be significantly improved with the incorporation of chloroprene rubber (CR) according to some references, the miscibility between NR and CR, the morphologies of the binary blends, and so on are revealed ambiguously. In this work, molecular dynamics simulation (MD) and dissipative particle dynamics (DPD) simulation were carried out to predict the compatibility between natural rubber and chloroprene rubber in view of Flory–Huggins parameters. The morphologies of the blends were obtained with the use of the DPD method. The simulation results were furtherly examined by means of Fourier transform infrared spectroscopy (FT-IR) and dynamic mechanical analysis (DMA). It was found that the miscibility between NR and CR is poor. Nevertheless, the miscibility could be improved when the content of CR is 50% or 90%. In addition, spinodal decomposition with a critical temperature of 390 K would take place according to the phase diagram. Microphase structure such as spherical, lamellar, and bicontinuous phases can be found with different contents of CR in the blends with the results of morphologies analysis
Design and Optimization of NR-Based Stretchable Conductive Composites Filled with MoSi<sub>2</sub> Nanoparticles and MWCNTs: Perspectives from Experimental Characterization and Molecular Dynamics Simulations
Stretchable conductive composites play a pivotal role in the development of personalized electronic devices, electronic skins, and artificial implant devices. This article explores the fabrication and characterization of stretchable composites based on natural rubber (NR) filled with molybdenum disilicide (MoSi2) nanoparticles and multi-walled carbon nanotubes (MWCNTs). Experimental characterization and molecular dynamics (MD) simulations are employed to investigate the static and dynamic properties of the composites, including morphology, glass transition temperature (Tg), electrical conductivity, and mechanical behavior. Results show that the addition of MoSi2 nanoparticles enhances the dispersion of MWCNTs within the NR matrix, optimizing the formation of a conductive network. Dynamic mechanical analysis (DMA) confirms the Tg reduction with the addition of MWCNTs and the influence of MoSi2 content on Tg. Mechanical testing reveals that the tensile strength increases with MoSi2 content, with an optimal ratio of 4:1 MoSi2:MWCNTs. Electrical conductivity measurements demonstrate that the MoSi2/MWCNTs/NR composites exhibit enhanced conductivity, reaching optimal values at specific filler ratios. MD simulations further support experimental findings, highlighting the role of MoSi2 in improving dispersion and mechanical properties. Overall, the study elucidates the synergistic effects of nanoparticles and nanotubes in enhancing the properties of stretchable conductive composites
Molecular Dynamic and Dissipative Particle Dynamic Simulation on the Miscibility of NR/CR Blends
Natural rubber (NR) exhibits good elasticity, flexural resistance, wear resistance, and excellent mechanical properties, and it has been widely used in aerospace, transportation, medical, and health fields. For NR, however, the resistance to thermal-oxidation and ozone aging is fairly poor. Although aging properties of NR can be significantly improved with the incorporation of chloroprene rubber (CR) according to some references, the miscibility between NR and CR, the morphologies of the binary blends, and so on are revealed ambiguously. In this work, molecular dynamics simulation (MD) and dissipative particle dynamics (DPD) simulation were carried out to predict the compatibility between natural rubber and chloroprene rubber in view of Flory–Huggins parameters. The morphologies of the blends were obtained with the use of the DPD method. The simulation results were furtherly examined by means of Fourier transform infrared spectroscopy (FT-IR) and dynamic mechanical analysis (DMA). It was found that the miscibility between NR and CR is poor. Nevertheless, the miscibility could be improved when the content of CR is 50% or 90%. In addition, spinodal decomposition with a critical temperature of 390 K would take place according to the phase diagram. Microphase structure such as spherical, lamellar, and bicontinuous phases can be found with different contents of CR in the blends with the results of morphologies analysis
Natural Hollow Fiber-Derived Carbon Microtube with Broadband Microwave Attenuation Capacity
Constructing hierarchical structures is indispensable to tuning the electromagnetic properties of carbon-based materials. Here, carbon microtubes with nanometer wall thickness and micrometer diameter were fabricated by a feasible approach with economical and sustainable kapok fiber. The carbonized kapok fiber (CKF) exhibits microscale pores from the inherent porous templates as well as pyrolysis-induced nanopores inside the wall, affording the hierarchical carbon microtube with excellent microwave absorbing performance over broad frequency. Particularly, CKF-650 exhibits an optimized reflection loss (RL) of −62.46 dB (10.32 GHz, 2.2 mm), while CKF-600 demonstrates an effective absorption bandwidth (RL < −10 dB) of 6.80 GHz (11.20–18.00 GHz, 2.8 mm). Moreover, more than 90% of the incident electromagnetic wave ranging from 2.88 GHz to 18.00 GHz can be dissipated by simply controlling the carbonization temperature of KF and/or the thickness of the carbon-microtube-based absorber. These encouraging findings provide a facile alternative route to fabricate microwave absorbers with broadband attenuation capacity by utilizing sustainable biomass
Exploring the impact of ambient temperature on respiratory diseases admissions, length of Stay, and hospitalization costs in Lanzhou City, based on distributed lag non-linear model
This study was to explore the relationships between daily mean temperature and hospital admissions, length of stay and hospitalization costs for respiratory diseases, and to estimate the risk effects and burden of disease. A time-series analysis was conducted by distributed lag non-linear model (DLNM) to explore the exposure-lag-response relationships between daily mean temperature and hospital admissions, length of stay, and hospitalization costs for respiratory diseases. The total cumulative exposure between the daily admissions, length of stay and hospitalization costs of respiratory diseases and the daily mean temperature showed significant nonlinear relationships, all with a shape approximately “W”. Extremely low temperature presented the greatest risk to respiratory diseases of admissions, length of stay and hospitalization costs, with the relative risks of 1.66 (95 % CI:1.32–2.09), 1.71 (95 % CI:1.33–2.20), 2.09 (95 % CI:1.53–2.84), respectively. The risks caused by low temperatures have delayed effect, capable of generating higher risks within lag 21 days. In contrast, the effects of high temperatures on the three outcomes only in the short term. The relative risks of exposure to extremely cold weather for elderly patients were the greatest, which were 2.47 (95 % CI:1.89–3.24), 2.11 (95 % CI:1.58–2.81) and 2.59 (95 % CI:1.81–3.70), respectively. In Lanzhou city, both low and high temperatures posed a certain risk to the hospital admissions, length of stay and hospitalization costs of respiratory diseases. Cold temperature exposure is the main risk factor to increase the risks of the three outcomes, and its risks have significant lag effect. Elderly patients are vulnerable to cold temperature exposure
Complete Suppression of Phase Segregation in Mixed-Halide Perovskite Nanocrystals under Periodic Heating
Under continuous light illumination, it is known that localized domains with segregated halide compositions form in semiconducting mixed-halide perovskites, thus severely limiting their optoelectronic applications due to the negative changes in bandgap energies and charge-carrier characteristics. Here mixed-halide perovskite CsPbBr1.2I1.8 nanocrystals are deposited onto an indium tin oxide substrate, whose temperature can be rapidly changed by ≈10 °C in a few seconds by applying or removing an external voltage. Such a sudden temperature change induces a temporary transition of CsPbBr1.2I1.8 nanocrystals from the segregated phase to the mixed phase, the latter of which can be permanently maintained when the light illumination is coupled with periodic heating cycles. These findings mark the emergence of a practical solution to the detrimental phase-segregation problem, given that a small temperature modulation is readily available in various fundamental studies and practical devices of mixed-halide perovskites.</p
Magnesium implantation as a continuous hydrogen production generator for the treatment of myocardial infarction in rats
Abstract Molecular hydrogen is an emerging broad-spectrum antioxidant molecule that can be used to treat myocardial infarction (MI). However, with hydrogen inhalation, the concentration that can be reached within target organs is low and the duration of action is short, which makes it difficult to achieve high dose targeted delivery of hydrogen to the heart, seriously limiting the therapeutic potential of hydrogen for MI. As a result of reactions with the internal environment of the body, subcutaneous implantation of magnesium slices leads to continuous endogenous hydrogen production, leading to a higher hydrogen concentration and a longer duration of action in target organs. In this study, we propose magnesium implant-based hydrogen therapy for MI. After subcutaneous implantation of magnesium slices in the dorsum of rats, we measured hydrogen production and efficiency, and evaluated the safety of this approach. Compared with hydrogen inhalation, it significantly improved cardiac function in rats with MI. Magnesium implantation also cleared free radicals that were released as a result of mitochondrial dysfunction, as well as suppressing cardiomyocyte apoptosis