660 research outputs found

    Undoped Electron-Hole Bilayers in a GaAs/AlGaAs Double Quantum Well

    Full text link
    We present the fabrication details of completely undoped electron-hole bilayer devices in a GaAs/AlGaAs double quantum well heterostructure with a 30 nm barrier. These devices have independently tunable densities of the two-dimensional electron gas and two-dimensional hole gas. We report four-terminal transport measurements of the independently contacted electron and hole layers with balanced densities from 1.2×10111.2 \times 10^{11}cm−2^{-2} down to 4×10104 \times 10^{10} cm−2^{-2} at T=300mKT = 300 mK. The mobilities can exceed 1×1061 \times 10^{6} cm2^{2} V−1^{-1} s−1^{-1} for electrons and 4×1054 \times 10^{5} cm2^{2} V−1^{-1} s−1^{-1} for holes.Comment: 3 pages, 3 figure

    Scattering Mechanism in Modulation-Doped Shallow Two-Dimensional Electron Gases

    Full text link
    We report on a systematic investigation of the dominant scattering mechanism in shallow two-dimensional electron gases (2DEGs) formed in modulation-doped GaAs/Al_{x}Ga_{1-x}As heterostructures. The power-law exponent of the electron mobility versus density, mu \propto n^{alpha}, is extracted as a function of the 2DEG's depth. When shallower than 130 nm from the surface, the power-law exponent of the 2DEG, as well as the mobility, drops from alpha \simeq 1.65 (130 nm deep) to alpha \simeq 1.3 (60 nm deep). Our results for shallow 2DEGs are consistent with theoretical expectations for scattering by remote dopants, in contrast to the mobility-limiting background charged impurities of deeper heterostructures.Comment: 4 pages, 3 figures, modified version as accepted in AP

    Giant microwave photoresistance of two-dimensional electron gas

    Full text link
    We measure microwave frequency (4-40 GHz) photoresistance at low magnetic field B, in high mobility 2D electron gas samples, excited by signals applied to a transmission line fabricated on the sample surface. Oscillatory photoresistance vs B is observed. For excitation at the cyclotron resonance frequency, we find an unprecedented, giant relative photoresistance (\Delta R)/R of up to 250 percent. The photoresistance is apparently proportional to the square root of applied power, and disappears as the temperature is increased.Comment: 4 pages, 3 figure

    New Mexico Youth Risk & Resiliency 2013 Survey Results Report: Mental Health and Related Behaviors

    Get PDF
    Mental health is an integral part of student well-being. It is essential to youth for maintaining healthy relationships, supporting academic achievement, and living full and productive lives. NM youth 10–19 years of age experience a higher rate of death by suicide than those in the US (9.8 vs. 4.8 deaths per 100,000 population). The 2013 Youth Risk & Resiliency Survey (YRRS) questionnaire included three questions in the middle school survey and four questions in the high school survey about suicide ideation and attempts. The high school survey also included a question about feelings of sadness or hopelessness (a risk factor for depression) and a question about non-suicidal self-injury (NSSI)

    Photoluminescence Detected Doublet Structure in the Integer and Fractional Quantum Hall Regime

    Get PDF
    We present here the results of polarized magneto-photoluminescence measurements on a high mobility single-heterojunction. The presence of a doublet structure over a large magnetic field range (2>nu>1/6) is interpreted as possible evidence for the existence of a magneto-roton minima of the charged density waves. This is understood as an indication of strong electronic correlation even in the case of the IQHE limit.Comment: submitted to Solid State Communication

    2D Metal-Insulator transition as a percolation transition

    Full text link
    By carefully analyzing the low temperature density dependence of 2D conductivity in undoped high mobility n-GaAs heterostructures, we conclude that the 2D metal-insulator transition in this system is a density inhomogeneity driven percolation transition due to the breakdown of screening in the random charged impurity disorder background. In particular, our measured conductivity exponent of ∼1.4\sim 1.4 approaches the 2D percolation exponent value of 4/3 at low temperatures and our experimental data are inconsistent with there being a zero-temperature quantum critical point in our system.Comment: 5 pages, 3 figure
    • …
    corecore