257 research outputs found

    Terahertz Time-Domain Magnetospectroscopy of a High-Mobility Two-Dimensional Electron Gas

    Full text link
    We have observed cyclotron resonance in a high-mobility GaAs/AlGaAs two-dimensional electron gas by using the techniques of terahertz time-domain spectroscopy combined with magnetic fields. From this, we calculate the real and imaginary parts of the diagonal elements of the magnetoconductivity tensor, which in turn allows us to extract the concentration, effective mass, and scattering time of the electrons in the sample. We demonstrate the utility of ultrafast terahertz spectroscopy, which can recover the true linewidth of cyclotron resonance in a high-mobility (>106cm2V−1s−1>{10}^{6} \mathrm{cm^{2} V^{-1} s^{-1}}) sample without being affected by the saturation effect.Comment: 4 pages, 3 figure

    Layer interdependence of transport in an undoped electron-hole bilayer

    Full text link
    The layer interdependence of transport in an undoped electron-hole bilayer (uEHBL) device was studied as a function of carrier density, interlayer electric field, and temperature. The uEHBL device consisted of a density tunable, independently contacted two-dimensional electron gas (2DEG) and two-dimensional hole gas (2DHG) induced via field effect in distinct GaAs quantum wells separated by a 30 nm Al0.9_{0.9}Ga0.1_{0.1}As barrier. Transport measurements were made simultaneously on each layer using the van der Pauw method. An increase in 2DHG mobility with increasing 2DEG density was observed, while the 2DEG mobility showed negligible dependence on the 2DHG density. Decreasing the interlayer electric-field and thereby increasing interlayer separation also increased the 2DHG mobility with negligible effects on the 2DEG mobility. The change in interlayer separation as interlayer electric-field changed was estimated using 2DHG Coulomb drag measurements. The results were consistent with mobility of each layer being only indirectly dependent on the adjacent layer density and dominated by background impurity scattering. Temperature dependencies were also determined for the resistivity of each layer.Comment: 8 pages, 6 figures, submitted to Phys. Rev.

    Superradiant Decay of Cyclotron Resonance of Two-Dimensional Electron Gases

    Get PDF
    We report on the observation of collective radiative decay, or superradiance, of cyclotron resonance (CR) in high-mobility two-dimensional electron gases in GaAs quantum wells using time-domain terahertz magnetospectroscopy. The decay rate of coherent CR oscillations increases linearly with the electron density in a wide range, which is a hallmark of superradiant damping. Our fully quantum mechanical theory provides a universal formula for the decay rate, which reproduces our experimental data without any adjustable parameter. These results firmly establish the many-body nature of CR decoherence in this system, despite the fact that the CR frequency is immune to electron-electron interactions due to Kohn's theorem.Comment: 5 pages, 4 figure
    • …
    corecore