2 research outputs found

    Monitoring phenylalanine concentrations in the follow-up of phenylketonuria patients:An inventory of pre-analytical and analytical variation

    Get PDF
    Background: Reliable measurement of phenylalanine (Phe) is a prerequisite for adequate follow-up of phenylketonuria (PKU) patients. However, previous studies have raised concerns on the intercomparability of plasma and dried blood spot (DBS) Phe results. In this study, we made an inventory of differences in (pre-)analytical methodology used for Phe determination across Dutch laboratories, and compared DBS and plasma results. Methods: Through an online questionnaire, we assessed (pre-)analytical Phe measurement procedures of seven Dutch metabolic laboratories. To investigate the difference between plasma and DBS Phe, participating laboratories received simultaneously collected plasma-DBS sets from 23 PKU patients. In parallel, 40 sample sets of DBS spotted from either venous blood or capillary fingerprick were analyzed. Results: Our data show that there is no consistency on standard operating procedures for Phe measurement. The association of DBS to plasma Phe concentration exhibits substantial inter-laboratory variation, ranging from a mean difference of −15.5% to +30.6% between plasma and DBS Phe concentrations. In addition, we found a mean difference of +5.8% in Phe concentration between capillary DBS and DBS prepared from venous blood. Conclusions: The results of our study point to substantial (pre-)analytical variation in Phe measurements, implicating that bloodspot Phe results should be interpreted with caution, especially when no correction factor is applied. To minimize variation, we advocate pre-analytical standardization and analytical harmonization of Phe measurements, including consensus on application of a correction factor to adjust DBS Phe to plasma concentrations

    High childhood serum triglyceride concentrations associate with hepatocellular adenoma development in patients with glycogen storage disease type Ia

    No full text
    Background & Aims: Glycogen storage disease type Ia (GSDIa) is an inborn error of carbohydrate metabolism caused by pathogenic variants in the glucose-6-phosphatase catalytic subunit 1 (G6PC1) gene and is associated with hepatocellular adenoma (HCA) formation. Data on risk factors for HCA occurrence in GSDIa are scarce. We investigated HCA development in relation to sex, G6PC1 genotype, and serum triglyceride concentration (TG). Methods: An observational study of patients with genetically confirmed GSDIa ≥12 years was performed. Patients were categorised for sex; presence of 2, 1, or 0 predicted severe G6PC1 variant (PSV); and median TG during childhood (5.65 mmol/L was associated with HCA development at younger age, compared with patients with childhood TG 5.65 mmol/L as an independent risk factor for HCA development (hazard ratio [HR] 6.0; 95% CI 1.2–29.8; p = 0.028). Conclusions: In patients with GSDIa, high childhood TG was associated with an increased risk of HCA, and earlier onset of HCA development, independent of sex-associated hypertriglyceridaemia, and G6PC1 genotype. Lay summary: Glycogen storage disease type Ia (GSDIa) is a rare, inherited metabolic disease that can be complicated by liver tumours (hepatocellular adenomas), which in turn may cause bleeding or progress to liver cancer. Risk factors associated with hepatocellular adenoma formation in patients with GSDIa are largely unknown. In our study, we found that high serum triglyceride concentrations during childhood, but not specific genetic variants, were associated with increased risk of hepatocellular adenoma diagnosis later in life
    corecore