8,129 research outputs found
Duality of privacy amplification against quantum adversaries and data compression with quantum side information
We show that the tasks of privacy amplification against quantum adversaries
and data compression with quantum side information are dual in the sense that
the ability to perform one implies the ability to perform the other. These are
two of the most important primitives in classical information theory, and are
shown to be connected by complementarity and the uncertainty principle in the
quantum setting. Applications include a new uncertainty principle formulated in
terms of smooth min- and max-entropies, as well as new conditions for
approximate quantum error correction.Comment: v2: Includes a derivation of an entropic uncertainty principle for
smooth min- and max-entropies. Discussion of the
Holevo-Schumacher-Westmoreland theorem remove
Hybridization, polyploidy, and evolutionary transitions between monoecy and dioecy in Bryonia (Cucurbitaceae)
Correns’s 1903 (Berichte der Deutschen Botanischen Gesellschaft 21: 133 – 147) crosses between a monoecious and a dioecious species of Bryonia revealed the simple Mendelian inheritance of dioecy and provided the first instance of an XY sex determination system in any organism. Bryonia ranges from the Canary Islands to Central Asia and comprises seven dioecious and three monoecious species; its closest relative, Ecballium elaterium, has dioecious and monoecious populations. We used chloroplast (cp) and nuclear (nr) gene phylogenies to infer sexual system evolution in Bryonia. We also tested for associations between sexual system and ploidy level, based on published and original chromosome counts. Conflicts between cp and nr topologies imply that the dioecious hexaploid B. cretica arose from hybridization(s), probably involving the dioecious diploids B. dioica, B. syriaca, and/or B. multiflora. A tetraploid dioecious endemic on Corsica and Sardinia probably originated from B. dioica via autopolyploidy. While the cp phylogeny resolves few species relationships, the nr tree implies at least two evolutionary changes in sexual system. There is no correlation between sexual system and ploidy level. Molecular clocks suggest that the deepest divergence, between a species on the Canary Islands and the ancestor of all remaining species, occurred ca. 10 million years ago
Comment on "Indispensable Finite Time Correlations for Fokker-Planck Equations from Time Series Data"
Comment on "Indispensable Finite Time Correlations for Fokker-Planck
Equations from Time Series Data"Comment: 2 pages, 1 figur
Linear flavour violation and anomalies in B physics
We propose renormalizable models of new physics that can explain various
anomalies observed in decays of B-mesons to electron and muon pairs. The new
physics states couple to linear combinations of Standard Model fermions,
yielding a pattern of flavour violation that gives a consistent fit to the
gamut of flavour data. Accidental symmetries prevent contributions to baryon-
and lepton-number-violating processes, as well as enforcing a loop suppression
of new physics contributions to flavour violating processes. Data require that
the new flavour-breaking couplings are largely aligned with the Yukawa
couplings of the SM and so we also explore patterns of flavour symmetry
breaking giving rise to this structure.Comment: v2: 28 pages, 10 figures. Added two appendices to make the SU(2)
structure of the model clearer, and to discuss Z/photon penguin
contributions. Updated a bound on Bs mixing, and added references.
Conclusions unchanged. Version to appear in JHE
Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way post-processing
We derive a bound for the security of QKD with finite resources under one-way
post-processing, based on a definition of security that is composable and has
an operational meaning. While our proof relies on the assumption of collective
attacks, unconditional security follows immediately for standard protocols like
Bennett-Brassard 1984 and six-states. For single-qubit implementations of such
protocols, we find that the secret key rate becomes positive when at least
N\sim 10^5 signals are exchanged and processed. For any other discrete-variable
protocol, unconditional security can be obtained using the exponential de
Finetti theorem, but the additional overhead leads to very pessimistic
estimates
One-shot lossy quantum data compression
We provide a framework for one-shot quantum rate distortion coding, in which
the goal is to determine the minimum number of qubits required to compress
quantum information as a function of the probability that the distortion
incurred upon decompression exceeds some specified level. We obtain a one-shot
characterization of the minimum qubit compression size for an
entanglement-assisted quantum rate-distortion code in terms of the smooth
max-information, a quantity previously employed in the one-shot quantum reverse
Shannon theorem. Next, we show how this characterization converges to the known
expression for the entanglement-assisted quantum rate distortion function for
asymptotically many copies of a memoryless quantum information source. Finally,
we give a tight, finite blocklength characterization for the
entanglement-assisted minimum qubit compression size of a memoryless isotropic
qubit source subject to an average symbol-wise distortion constraint.Comment: 36 page
- …