59 research outputs found
Health Risk Assessment of Lead in Soils from an Historic Industrial Site in North-East England
The former St. Antony’s Lead Works site, now the central part of an urban recreational park (Walker Riverside Park) in the east end of Newcastle upon Tyne (England, UK), has been assessed based on the Pb concentration in topsoil according to recently derived Category 4 Screening Level (C4SL) for public open space–park (POSpark, 1300 mg/kg). The site was divided into eight sampling areas following its physical layout. In total 79 soil samples were collected, characterised for acidity and organic matter content, and analysed by energy dispersive X-ray fluorescence (ED-XRF). The Pb levels in most of the samples, particularly those from the fringes of the site, are below the generic guideline value (down to 70 mg/kg). More than 16 of the samples from nearly all sampling areas, especially those sampling points around the former horizontal condenser flue and main chimney, contain levels of Pb significantly exceeding the limit (up to 206,000 mg/kg). No correlation is found between the Pb concentration in soil samples and their acidity (mostly neutral, pH 7.0 ± 0.5) or organic matter content (15.5 ± 4.1). Using the Contaminated Land Exposure Assessment (CLEA) model (version 1.071), the site-specific risk assessment criteria (SSAC) for Lead (C4SL child), 2862 mg/kg, is obtained based on adjusted exposure frequency and occupancy period. Nearly 9 of the individual sample Pb concentrations (n = 79) across sample locations B, C, D and H are still above the specific value. Further statistical evaluation based on 95 upper confidence limit confirms that the site still represents a potential human health risk. This is because Pb concentrations, from two areas in the centre of the site (sample locations B and C), are greatly over the SSAC specific threshold (sample mean at location B is 12,350 mg/kg and at location C is 11,745 mg/kg)
(3-Aminopropyl) Triethoxysilane-Based Immobilization of Pt/WO3 on a Microfiber Sensor for High Sensitivity Hydrogen Sensing
A novel high stability hydrogen sensor based on a Pt/WO3 coated single-mode tapered-no-core single-mode (STNCS) fiber interferometer is proposed and experimentally studied. The STNCS structure is treated by (3-Aminopropyl) triethoxysilane (APTES) and then coated with Pt/WO3 nanorods. Compared to the traditional method of using poly (dimethylsiloxane) (PDMS) to adhere Pt/WO3 nanorods on the fiber surface, the APTES modified fiber forms strong covalent bonds with Pt/WO3 with stronger adhesion to the fiber surface, resulting in improved long-term stability. Experimental results show that the sensitivity of the sensor varies from -31.05 nm/% to -4.30 nm/% as the hydrogen concentration increases from 0 to 1.04%. The sensor also demonstrates good reproducibility, longer term stability and repeatability
Approaches to assess the oral bioaccessibility of persistent organic pollutants: A critical review
Oral bioaccessibility, also known as in vitro gastrointestinal extraction or the physiologically based extraction test (PBET), is an important tool when assessing the risk to humans from persistent organic pollutants (POPs) (and metals). The approach seeks to mimic the processes of human food digestion and thereby assess the bioavailability of POPs (and metals) from materials consumed either accidentally or intentionally in the diet. In vitro conditions are created to simulate various actions in the stomach and intestines (although some methods also include the mouth compartment). This paper reviews the current status of oral bioaccessibility with respect to the release of POPs from soil and related samples of environmental importance. Particular emphasis is placed on the parameters that influence gastrointestinal extraction including gastric and intestinal pH, enzymes, bile salts, food constituents and residence time. In addition, important developments in the use of in vitro gastrointestinal extraction are highlighted. These developments include the use of epithelial Caco-2 cells to mimic the intestinal cell lining, the potential for biotransformation of POPs into estrogenic metabolites as a result of colon microbiota, and the use of in vivo studies to validate existing approaches
Pressurized fluid extraction
This chapter contains sections titled:
Introduction
Theoretical Considerations Relating to the Extraction Process
Instrumentation
Typical Extraction Procedure (Based on ASE 350)
Method Development
Applications of PFE
Comparison of PFE with Other Extraction Techniques
Suppliers of the PFE Equipment
Reference
Promoting Learning Through Peer Group Work
The session aimed to help the Summer School participants develop tasks and assessment strategies of peer group work in their own teaching
- …