21 research outputs found

    Simulations of Triple Microlensing Events I: Detectability of a scaled Sun-Jupiter-Saturn System

    Full text link
    Up to date, only 13 firmly established triple microlensing events have been discovered, so the occurrence rates of microlensing two-planet systems and planets in binary systems are still uncertain. With the upcoming space-based microlensing surveys, hundreds of triple microlensing events will be detected. To provide clues for future observations and statistical analyses, we initiate a project to investigate the detectability of triple-lens systems with different configurations and observational setups. As the first step, in this work we develop the simulation software and investigate the detectability of a scaled Sun-Jupiter-Saturn system with the recently proposed microlensing telescope of the ``Earth 2.0 (ET)'' mission. We find that the detectability of the scaled Sun-Jupiter-Saturn analog is about 1%. In addition, the presence of the Jovian planet suppresses the detectability of the Saturn-like planet by ∼\sim 13% regardless of the adopted detection Δχ2\Delta\chi^2 threshold. This suppression probability could be at the same level as the Poisson noise of future space-based statistical samples of triple-lenses, so it is inappropriate to treat each planet separately during detection efficiency calculations.Comment: 14 pages, 11 figures, submitted to MNRAS, comments welcome

    Micromechanical Origin of Heat Transfer to Granular Flow

    Full text link
    Heat transfer to a granular flow is comprised of two resistances in series: near the wall and within the bulk particle bed, neither of which is well understood due to the lack of experimental probes to separate their respective contribution. Here, we use a frequency modulated photothermal technique to separately quantify the thermal resistances in the near-wall and the bulk bed regions of particles in flowing states. Compared to the stationary state, the flowing leads to a higher near-wall resistance and a lower thermal conductivity of bulk beds. Coupled with discrete element method simulation, we show that the near-wall resistance can be explained by particle diffusion in granular flows.Comment: 14 pages, 5 figures, submitted to Physical Review Letter

    In-situ Thermophysical Measurement of Flowing Molten Chloride Salt Using Modulated Photothermal Radiometry

    Full text link
    Molten salts are a leading candidate for high-temperature heat transfer fluids (HTFs) for thermal energy storage and conversion systems in concentrated solar power (CSP) and nuclear energy power plants. The ability to probe molten salt thermal transport properties in both stationary and flowing status is important for the evaluation of their heat transfer performance under realistic operational conditions, including the temperature range and potential degradation due to corrosion and contamination. However, accurate thermal transport properties are usually challenging to obtain even for stagnant molten salts due to different sources of errors from convection, radiation, and corrosion, let alone flowing ones. To the best of authors' knowledge, there is no available in-situ technique for measuring flowing molten salt thermal conductivity. Here, we report the first in-situ flowing molten salt thermal conductivity measurement using modulated photothermal radiometry (MPR). We could successfully perform the first in-situ thermal conductivity measurement of flowing molten NaCl−KCl−MgCl2NaCl-KCl-MgCl_2 in the typical operating temperature (520 and 580 oC^oC) with flow velocities ranging from around 0.3 to 1.0 mms−1s^-1. The relative change of the molten salt thermal conductivity was measured. Gnielinski's correlation was also used to estimate the heat transfer coefficient h of the flowing NaCl−KCl−MgCl2NaCl-KCl-MgCl_2 in the given experimental condition. The work showed the potential of the MPR technique serving as an in-situ diagnostics tool to evaluate the heat transfer performance of flowing molten salts and other high-temperature HTFs

    Comparison of staged-stent and stent-assisted coiling technique for ruptured saccular wide-necked intracranial aneurysms: Safety and efficacy based on a propensity score-matched cohort study

    Get PDF
    BackgroundApplication of stent-assisted coiling and FD in acute phase of ruptured wide-necked aneurysms is relatively contraindicated due to the potential risk of ischemic and hemorrhagic complications. Scheduled stenting after initial coiling has emerged as an alternative paradigm for ruptured wide-necked aneurysms. The objective of this study is to evaluate the safety and efficacy of a strategy of staged stent-assisted coiling in acutely ruptured saccular wide-necked intracranial aneurysms compared with conventional early stent-assisted coiling strategy via propensity score matching in a high-volume center.MethodsA retrospective review of patients with acutely ruptured saccular wide-necked intracranial aneurysms who underwent staged stent-assisted coiling or conventional stent-assisted coiling from November 2014 to November 2019 was performed. Perioperative procedure-related complications and clinical and angiographic follow-up outcomes were compared.ResultsA total of 69 patients with staged stent-assisted coiling and 138 patients with conventional stent-assisted coiling were enrolled after 1:2 propensity score matching. The median interval time between previous coiling and later stenting was 4.0 weeks (range 3.5–7.5 weeks). No rebleeding occurred during the intervals. The rate of immediate complete occlusion was lower with initial coiling before scheduled stenting than with conventional stent-assisted coiling (21.7 vs. 60.9%), whereas comparable results were observed at follow-up (82.5 vs. 72.9%; p = 0.357). The clinical follow-up outcomes, overall procedure-related complications and procedure-related mortality between the two groups demonstrated no significant differences (P = 0.232, P = 0.089, P = 0.537, respectively). Multivariate analysis showed that modified Fisher grades (OR = 2.120, P = 0.041) were independent predictors for overall procedure-related complications and no significant predictors for hemorrhagic and ischemic complications.ConclusionsStaged stent-assisted coiling is a safe and effective treatment strategy for acutely ruptured saccular wide-necked intracranial aneurysms, with comparable complete occlusion rates, recurrence rates at follow-up and overall procedure-related complication rates compared with conventional stent-assisted coiling strategy. Staged stent-assisted coiling could be an alternative treatment option for selected ruptured intracranial aneurysms in the future

    Interfacial Electronic Effects in Co@N-Doped Carbon Shells Heterojunction Catalyst for Semi-Hydrogenation of Phenylacetylene

    No full text
    Metal-supported catalyst with high activity and relatively simple preparation method is given priority to industrial production. In this work, this study reported an easily accessible synthesis strategy to prepare Mott-Schottky-type N-doped carbon encapsulated metallic Co (Co@Np+gC) catalyst by high-temperature pyrolysis method in which carbon nitride (g-C3N4) and dopamine were used as support and nitrogen source. The prepared Co@Np+gC presented a Mott-Schottky effect; that is, a strong electronic interaction of metallic Co and N-doped carbon shell was constructed to lead to the generation of Mott-Schottky contact. The metallic Co, due to high work function as compared to that of N-doped carbon, transferred electrons to the N-doped outer shell, forming a new contact interface. In this interface area, the positive and negative charges were redistributed, and the catalytic hydrogenation mainly occurred in the area of active charges. The Co@Np+gC catalyst showed excellent catalytic activity in the hydrogenation of phenylacetylene to styrene, and the selectivity of styrene reached 82.4%, much higher than those of reference catalysts. The reason for the promoted semi-hydrogenation of phenylacetylene was attributed to the electron transfer of metallic Co, as it was caused by N doping on carbon

    A One-Pot Hydrothermal Preparation of High Loading Ni/La<sub>2</sub>O<sub>3</sub> Catalyst for Efficient Hydrogenation of Cinnamaldehyde

    No full text
    It is a challenging task for selective hydrogenation of cinnamaldehyde (CAL) to hydrocinnamaldehyde (HCAL) without additional by-product formation. In this work, a La2O3 supported high Ni content nanoparticle catalyst was prepared for CAL selective hydrogenation. Meanwhile, Co-La2O3 catalysts were used as a reference catalyst. XRD, TEM, STEM-HAADF, XPS, and H2-TPR measurements were used to investigate the physicochemical properties of Ni-La2O3 catalysts. The experimental results confirmed that the CAL conversion and HCAL selectivity were effectively promoted with the increase of Ni loading amounts. At a Ni/La molar ratio of four, a high HCAL selectivity of 87.4% was obtained at a CAL conversion of 88.1% under mild reaction conditions. The catalyst was recycled five times without activity loss. Combined with various characterizations, it could be inferred that the good hydrogen adsorption and dissociation capacity of Ni and the presence of a certain amount of oxygen vacancies on the La2O3 support have a positive effect on the improvement of HCAL selectivity. This work provided an effective path to design transition-metal-based supported oxide catalyst for the cinnamaldehyde hydrogenation to hydrocinnamaldehyde

    Curing Behavior of UV-Initiated Surface-Modified Nano-TiO<sub>2</sub>/Epoxy Resin Prepolymers and the Properties of Cured Composites

    No full text
    Nano-titanium dioxides (nano-TiO2) surface modified with isopropyl tri(dioctylpyrophosphate) titanate (NDZ-201), a titanate coupling agent, and 3-glycidoxypropyltrimethoxysilane (KH-560), a silane coupling agent, were separately mixed with bisphenol A epoxy resin (DEGBA) prepolymer and then cured using a UV-normal temperature synergistic curing process. Then, the isothermal curing process of the system was investigated by differential scanning calorimetry (DSC). The relationship between the organization structures, mechanical properties, and heat resistance properties of the cured composites and material formulation was studied, and the DSC results showed that the addition of nano-TiO2 reduced the curing reaction rate constant k1 and increased the k2 of the prepolymer, while the activation energy of the curing reaction after UV irradiation Ea1 decreased, and the activation energy in the middle and later periods Ea2 increased. The characterization results of the composite material showed that nano-TiO2 as a scattering agent reduced the photoinitiation efficiency of UV light, and due to its obvious agglomeration tendency in the epoxy resin, the mechanical properties of the composite material were poor. The dispersibility of the coupling-agent-modified nano-TiO2 in the epoxy resin was greatly enhanced, and the mechanical and heat resistance properties of the composite material improved remarkably. The comparison results of the two coupling agents showed that NDZ-201 had better performance in increasing the impact strength by 6.8% (minimum value, the same below) and the maximum thermal decomposition rate temperature by 4.88 °C of the composite, while KH-560 improved the tensile strength by 7.3% and the glass transition temperature (Tg) by 3.34 °C of the composite
    corecore