47 research outputs found

    Placenta Growth Factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PlGF-1/VEGF heterodimers

    Get PDF
    AbstractTumor growth and metastasis require concomitant growth of new blood vessels, which are stimulated by angiogenic factors, including vascular endothelial growth factor (VEGF), secreted by most tumors. Whereas the angiogenic property and molecular mechanisms of VEGF have been well studied, the biological function of its related homolog, placenta growth factor (PlGF), is poorly understood. Here we demonstrate that PlGF-1, an alternatively spliced isoform of the PlGF gene, antagonizes VEGF-induced angiogenesis when both factors are coexpressed in murine fibrosarcoma cells. Overexpression of PlGF-1 in VEGF-producing tumor cells results in the formation of PlGF-1/VEGF heterodimers and depletion of the majority of mouse VEGF homodimers. The heterodimeric form of PlGF-1/VEGF lacks the ability to induce angiogenesis in vitro and in vivo. Similarly, PlGF-1/VEGF fails to activate the VEGFR-2-mediated signaling pathways. Further, PlGF-1 inhibits the growth of a murine fibrosarcoma by approximately 90% when PlGF-1-expressing tumor cells are implanted in syngeneic mice. In contrast, overexpression of human VEGF in murine tumor cells causes accelerated and exponential growth of primary fibrosarcomas and early hepatic metastases. Our data demonstrate that PlGF-1, a member of the VEGF family, acts as a natural antagonist of VEGF when both factors are synthesized in the same population of cells. The underlying mechanism is due to the formation of functionally inactive heterodimers

    Hypoxia-Induced Retinal Angiogenesis in Zebrafish as a Model to Study Retinopathy

    Get PDF
    Mechanistic understanding and defining novel therapeutic targets of diabetic retinopathy and age-related macular degeneration (AMD) have been hampered by a lack of appropriate adult animal models. Here we describe a simple and highly reproducible adult fli-EGFP transgenic zebrafish model to study retinal angiogenesis. The retinal vasculature in the adult zebrafish is highly organized and hypoxia-induced neovascularization occurs in a predictable area of capillary plexuses. New retinal vessels and vascular sprouts can be accurately measured and quantified. Orally active anti-VEGF agents including sunitinib and ZM323881 effectively block hypoxia-induced retinal neovascularization. Intriguingly, blockage of the Notch signaling pathway by the inhibitor DAPT under hypoxia, results in a high density of arterial sprouting in all optical arteries. The Notch suppression-induced arterial sprouting is dependent on tissue hypoxia. However, in the presence of DAPT substantial endothelial tip cell formation was detected only in optic capillary plexuses under normoxia. These findings suggest that hypoxia shifts the vascular targets of Notch inhibitors. Our findings for the first time show a clinically relevant retinal angiogenesis model in adult zebrafish, which might serve as a platform for studying mechanisms of retinal angiogenesis, for defining novel therapeutic targets, and for screening of novel antiangiogenic drugs

    Cell-Type-Specific Regulation of Degradation of Hypoxia-Inducible Factor 1α: Role of Subcellular Compartmentalization

    No full text
    The hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that mediates adaptive cellular responses to decreased oxygen availability (hypoxia). At normoxia, HIF-1α is targeted by the von Hippel-Lindau tumor suppressor protein (pVHL) for degradation by the ubiquitin-proteasome pathway. In the present study we have observed distinct cell-type-specific differences in the ability of various tested pVHL-interacting subfragments to stabilize HIF-1α and unmask its function at normoxia. These properties correlated with differences in subcellular compartmentalization and degradation of HIF-1α. We observed that the absence or presence of nuclear localization or export signals differently affected the ability of a minimal HIF-1α peptide spanning residues 559 to 573 of mouse HIF-1α to stabilize endogenous HIFα and induce HIF-driven reporter gene activity in two different cell types (primary mouse endothelial and HepG2 hepatoma cells). Degradation of HIF-1α occurred mainly in the cytoplasm of HepG2 cells, whereas it occurs with equal efficiency in nuclear and cytoplasmic compartments of primary endothelial cells. Consistent with these observations, green fluorescent protein-HIF-1α is differently distributed during hypoxia and reoxygenation in hepatoma and endothelial cells. Consequently, we propose that differential compartmentalization of degradation of HIF-1α and the subcellular distribution of HIF-1α may account for cell-type-specific differences in stabilizing HIF-1α protein levels under hypoxic conditions
    corecore