5 research outputs found

    Buchbesprechungen

    No full text

    Increased productivity of recombinant tissular plasminogen activator (t-PA) by butyrate and shift of temperature: a cell cycle phases analysis.

    No full text
    Directed control of cell metabolism by a modification of the physicochemical conditions (presence of Na-butyrate and modification of the temperature) was used to modulate the productivity of human recombinant tissular plasminogen activator (t-PA) expressed under control of SV40 promoter in Chinese Hamster Ovary (CHO) cell lines. We showed that both by adding Na-butyrate or lowering temperature from 37 degrees C to 32 degrees C there is an increase in the amount of t-PA excreted, while cell growth is significantly reduced. The treatments also increased the intracellular amount of t-PA. We measured the distribution of cell cycle phases by cytometry and used a modification of the equations of Kromenaker and Srienc (1991, 1994 a, b) to analyse the intracellular t-PA production rate in the different cell cycle phases. Intracellular t-PA was shown to accumulate in G1 phase in all conditions (at 37 degrees C, at 32 degrees C and in presence of butyrate). Moreover, we have shown that the distribution of the time cells treated by butyrate are maintained in the G1cell cycle phase is significantly increased. t-PA produced in the different cell culture conditions tested was analysed by zymogram and western blotting: neither butyrate, neither the shift of temperature changed significantly the overall quality of the protein. The N-glycan patterns of recombinant human t-PA was also analysed with carbohydrate-specific lectins. Butyrate caused a transitory increase in N-linked complex high-mannose oligosaccharides without any effect on the sialic acid content of t-PA.Journal ArticleSCOPUS: cp.jinfo:eu-repo/semantics/publishe

    Review of Literature for Air Medical Evacuation High-Level Containment Transport

    No full text
    Introduction Aeromedical evacuation (AE) is a challenging process, further complicated when a patient has a highly hazardous communicable disease (HHCD). We conducted a review of the literature to evaluate the processes and procedures utilized for safe AE high-level containment transport (AE-HLCT) of patients with HHCDs. Methods A literature search was performed in PubMed/MEDLINE (from 1966 through January 2019). Authors screened abstracts for inclusion criteria and full articles were reviewed if the abstract was deemed to contain information related to the aim. Results Our search criteria yielded 14 publications and were separated based upon publication dates, with the natural break point being the beginning of the 2013-2016 Ebola virus disease epidemic. Best practices and recommendations from identified articles are subdivided into pre-flight preparations, inflight operations, and post-flight procedures. Conclusions Limited peer-reviewed literature exists on AE-HLCT, including important aspects related to healthcare worker fatigue, alertness, shift scheduling, and clinical care performance. This hinders the sharing of best practices to inform evacuations and equip teams for future outbreaks. Despite the successful use of different aircraft and technologies, the unique nature of the mission opens the opportunity for greater coordination and development of consensus standards for AE-HLCT operations
    corecore