27 research outputs found
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
Recommended from our members
A novel, putative gain-of-function haplotype at SLC6A4 associates with obsessive-compulsive disorder
Obsessive-compulsive disorder (OCD) is a disabling neuropsychiatric illness with strong segregation data indicative of major genetic contributions. Association analyses of common functional variants of the serotonin transporter gene (SLC6A4), a long-standing OCD candidate, have so far been inconsistent. Here, we set out to investigate the role of additional functional SLC6A4 loci in OCD. We describe a common, functional C > T single nucleotide polymorphism, rs25532, located less than 150 nucleotides centromeric of the serotonin transporter-linked polymorphic region indel known as 5-HTTLPR. The minor allele of rs25532 significantly decreased luciferase reporter gene expression levels by 15-80%, depending on 5-HTTLPR allele background and cell type. Haplotype-based testing of rs25532 and all other known non-coding functional SLC6A4 variants revealed a highly significant omnibus association with OCD in a large case-control sample. Remarkably, the haplotype significantly overrepresented in probands contained the higher-expressing allele at each locus, supporting the notion of increased serotonin transporter functioning being pathogenetically involved in OCD. Conditional haplotype analyses with the software WHAP revealed that this association is primarily driven by 5-HTTLPR, rs25532 and rs16965628. Our results contribute to a better understanding of SLC6A4 expression genetics and provide a functional haplotype framework for future serotonin-related studies
Use of postmortem human dura mater and scalp for deriving human fibroblast cultures.
Fibroblasts can be collected from deceased individuals, grown in culture, reprogrammed into induced pluripotent stem cells (iPSCs), and then differentiated into a multitude of cell types, including neurons. Past studies have generated iPSCs from somatic cell biopsies from either animal or human subjects. Previously, fibroblasts have only been successfully cultured from postmortem human skin in two studies. Here we present data on fibroblast cell cultures generated from 146 scalp and/or 53 dura mater samples from 146 postmortem human brain donors. In our overall sample, the odds of successful dural culture was almost two-fold compared with scalp (OR = 1.95, 95% CI: [1.01, 3.9], p = 0.047). Using a paired design within subjects for whom both tissues were available for culture (n = 53), the odds of success for culture in dura was 16-fold as compared to scalp (OR = 16.0, 95% CI: [2.1-120.6], p = 0.0007). Unattended death, tissue donation source, longer postmortem interval (PMI), and higher body mass index (BMI) were associated with unsuccessful culture in scalp (all p<0.05), but not in dura. While scalp cells proliferated more and grew more rapidly than dura cells [F (1, 46) = 12.94, p<0.008], both tissues could be generated and maintained as fibroblast cell lines. Using a random sample of four cases, we found that both postmortem scalp and dura could be successfully reprogrammed into iPSC lines. Our study demonstrates that postmortem dura mater, and to a lesser extent, scalp, are viable sources of living fibroblasts for culture that can be used to generate iPSCs. These tissues may be accessible through existing brain tissue collections, which is critical for studying disorders such as neuropsychiatric diseases
A Haplotype Containing Quantitative Trait Loci for SLC1A1 Gene Expression and Its Association With Obsessive-Compulsive Disorder
CONTEXT: Recent evidence from linkage analyses and follow-up candidate gene studies supports the involvement of SLC1A1, which encodes the neuronal glutamate transporter, in the development of obsessive-compulsive disorder (OCD). OBJECTIVES: To determine the role of genetic variation of SLC1A1 in OCD in a large case-control study and to better understand how SLC1A1 variation affects functionality. DESIGN: A case-control study. SETTING: Publicly accessible SLC1A1 expression and genotype data. PATIENTS: Three hundred twenty-five OCD probands and 662 ethnically and sex-matched controls. INTERVENTIONS: Probands were assessed with the Structured Clinical Interview for DSM-IV, the Yale-Brown Obsessive Compulsive Scale, and the Saving Inventory–Revised. Six single-nucleotide polymorphisms (SNPs) were genotyped. Multiple testing corrections for single-marker and haplotype analyses were performed by permutation. RESULTS: Gene expression of SLC1A1 is heritable in lymphoblastoid cell lines. We identified 3 SNPs in or near SLC1A1 that correlated with gene expression levels, 1 of which had previously been associated with OCD. Two of these SNPs also predicted expression levels in human brain tissue, and 1 SNP was further functional in reporter gene studies. Two haplotypes at 3 SNPs, rs3087879, rs301430, and rs7858819, were significantly associated with OCD after multiple-testing correction and contained 2 SNPs associated with expression levels. In addition, another SNP correlating with SLC1A1 gene expression, rs3933331, was associated with an OCD-hoarding subphenotype as assessed by 2 independent, validated scales. CONCLUSIONS: Our case-control data corroborate previous smaller family-based studies that indicated that SLC1A1 is a susceptibility locus for OCD. The expression and genotype database–mining approach we used provides a potentially useful complementary approach to strengthen future candidate gene studies in neuropsychiatric and other disorders
How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems
Discovered and crystallized over sixty years ago, serotonin's important functions in the brain and body were identified over the ensuing years by neurochemical, physiological and pharmacological investigations. This 2008 M. Rapport Memorial Serotonin Review focuses on some of the most recent discoveries involving serotonin that are based on genetic methodologies. These include examples of the consequences that result from direct serotonergic gene manipulation (gene deletion or overexpression) in mice and other species; an evaluation of some phenotypes related to functional human serotonergic gene variants, particularly in SLC6A4, the serotonin transporter gene; and finally, a consideration of the pharmacogenomics of serotonergic drugs with respect to both their therapeutic actions and side effects. The serotonin transporter (SERT) has been the most comprehensively studied of the serotonin system molecular components, and will be the primary focus of this review. We provide in-depth examples of gene-based discoveries primarily related to SLC6A4 that have clarified serotonin's many important homeostatic functions in humans, non-human primates, mice and other species
Epistatic and functional interactions of catechol-o-methyltransferase (COMT) and AKT1 on neuregulin1-ErbB signaling in cell models.
Neuregulin1 (NRG1)-ErbB signaling has been implicated in the pathogenesis of cancer and schizophrenia. We have previously reported that NRG1-stimulated migration of B lymphoblasts is PI3K-AKT1dependent and impaired in patients with schizophrenia and significantly linked to the catechol-o-methyltransferase (COMT) Val108/158Met functional polymorphism.We have now examined AKT1 activation in NRG1-stimulated B lymphoblasts and other cell models and explored a functional relationship between COMT and AKT1. NRG1-induced AKT1 phosphorylation was significantly diminished in Val carriers compared to Met carriers in both normal subjects and in patients. Further, there was a significant epistatic interaction between a putatively functional coding SNP in AKT1 (rs1130233) and COMT Val108/158Met genotype on AKT1 phosphorylation. NRG1 induced translocation of AKT1 to the plasma membrane also was impaired in Val carriers, while PIP(3) levels were not decreased. Interestingly, the level of COMT enzyme activity was inversely correlated with the cells' ability to synthesize phosphatidylserine (PS), a factor that attracts the pleckstrin homology domain (PHD) of AKT1 to the cell membrane. Transfection of SH-SY5Y cells with a COMT Val construct increased COMT activity and significantly decreased PS levels as well as NRG1-induced AKT1 phosphorylation and migration. Administration of S-adenosylmethionine (SAM) rescued all of these deficits. These data suggest that AKT1 function is influenced by COMT enzyme activity through competition with PS synthesis for SAM, which in turn dictates AKT1-dependent cellular responses to NRG1-mediated signaling.Our findings implicate genetic and functional interactions between COMT and AKT1 and may provide novel insights into pathogenesis of schizophrenia and other ErbB-associated human diseases such as cancer
Demographic and sample parameters of successful culture in scalp (n = 146).
<p>OR = odds ratio, AA = African-American, W = White, PMI = postmortem interval, BMI = body mass index, F = female, M = male, VA = Virginia, DC = District of Columbia; Tox = toxicology testing in blood or vitreous humor; * = p<0.05.</p
Odds ratio of culture success: dura vs. scalp matched pairs (n = 53).
<p>No = not successful, Yes = successful.</p