16 research outputs found

    Pharmacokinetic/pharmacodynamic modeling of the antinociceptive effects of (+)-tramadol in the rat: role of cytochrome P450 2D activity

    Get PDF
    In this study the role of cytochrome P450 2D (CYP2D) in the pharmacokinetic/pharmacodynamic relationship of (+)-tramadol [(+)-T] has been explored in rats. Male Wistar rats were infused with (+)-T in the absence of and during pretreatment with a reversible CYP2D inhibitor quinine (Q), determining plasma concentrations of Q, (+)-T, and (+)-O-demethyltramadol [(+)-M1], and measuring antinociception. Pharmacokinetics of (+)-M1, but not (+)-T, was affected by Q pretreatment: early after the start of (+)-T infusion, levels of (+)-M1 were significantly lower (P < 0.05). However, at later times during Q infusion those levels increased continuously, exceeding the values found in animals that did not receive the inhibitor. These results suggest that CYP2D is involved in the formation and elimination of (+)-M1. In fact, results from another experiment where (+)-M1 was given in the presence and in absence of Q showed that (+)-M1 elimination clearance (CL(ME0)) was significantly lower (P < 0.05) in animals receiving Q. Inhibition of both (+)-M1 formation clearance (CL(M10)) and CL(ME0) were modeled by an inhibitory E(MAX) model, and the estimates (relative standard error) of the maximum degree of inhibition (E(MAX)) and IC(50), plasma concentration of Q eliciting half of E(MAX) for CL(M10) and CL(ME0), were 0.94 (0.04), 97 (0.51) ng/ml, and 48 (0.42) ng/ml, respectively. The modeling of the time course of antinociception showed that the contribution of (+)-T was negligible and (+)-M1 was responsible for the observed effects, which depend linearly on (+)-M1 effect site concentrations. Therefore, the CYP2D activity is a major determinant of the antinociception elicited after (+)-T administration

    Pharmacokinetic/Pharmacodynamic Modeling of Antipyretic and Anti-Inflammatory Effects of Naproxen in the Rat

    Get PDF
    Pharmacokinetic/pharmacodynamic modeling was used to characterize the antipyretic and anti-inflammatory effects of naproxen in rats. An indirect response model was used to describe the antipyretic effects of naproxen after short intravenous infusions. The model assumes that basal temperature (T(a)) is maintained by the balance of fever mediators given by a constant (zero order) rate of synthesis (K(syn)), and a first order rate of degradation (K(out)). After an intraperitoneal injection of lipopolysaccharide, the change in T(a) was modeled assuming an increase in fever mediators described as an input rate function [IR(t)] estimated nonparametrically. An inhibitory E(max) model adequately described the inhibition of IR(t) by naproxen. A more complex model was used to describe the anti-inflammatory response of oral naproxen in the carrageenin-induced edema model. Before carrageenin injection, physiological conditions are maintained by a balance of inflammation mediators given by K(syn) and K(out) (see above). After carrageenin injection, the additional synthesis of mediators is described by IR(t) (see above). Such mediators induced an inflammatory process, which is governed by a first order rate constant (K(IN)) that can be inhibited by the presence of naproxen in plasma. The sigmoidal E(max) model also well described the inhibition of K(IN) by naproxen. Estimates for IC(50) [concentration of naproxen in plasma eliciting half of maximum inhibition of IR(t) or K(IN)] were 4.24 and 4.13 microg/ml, for the antipyretic and anti-inflammatory effects, respectively

    Effect of viral storm in patients admitted to intensive care units with severe COVID-19 in Spain: a multicentre, prospective, cohort study

    Get PDF
    Background: The contribution of the virus to the pathogenesis of severe COVID-19 is still unclear. We aimed to evaluate associations between viral RNA load in plasma and host response, complications, and deaths in critically ill patients with COVID-19. Methods: We did a prospective cohort study across 23 hospitals in Spain. We included patients aged 18 years or older with laboratory-confirmed SARS-CoV-2 infection who were admitted to an intensive care unit between March 16, 2020, and Feb 27, 2021. RNA of the SARS-CoV-2 nucleocapsid region 1 (N1) was quantified in plasma samples collected from patients in the first 48 h following admission, using digital PCR. Patients were grouped on the basis of N1 quantity: VIR-N1-Zero ([removed]2747 N1 copies per mL). The primary outcome was all-cause death within 90 days after admission. We evaluated odds ratios (ORs) for the primary outcome between groups using a logistic regression analysis. Findings: 1068 patients met the inclusion criteria, of whom 117 had insufficient plasma samples and 115 had key information missing. 836 patients were included in the analysis, of whom 403 (48%) were in the VIR-N1-Low group, 283 (34%) were in the VIR-N1-Storm group, and 150 (18%) were in the VIR-N1-Zero group. Overall, patients in the VIR-N1-Storm group had the most severe disease: 266 (94%) of 283 patients received invasive mechanical ventilation (IMV), 116 (41%) developed acute kidney injury, 180 (65%) had secondary infections, and 148 (52%) died within 90 days. Patients in the VIR-N1-Zero group had the least severe disease: 81 (54%) of 150 received IMV, 34 (23%) developed acute kidney injury, 47 (32%) had secondary infections, and 26 (17%) died within 90 days (OR for death 0·30, 95% CI 0·16–0·55; p<0·0001, compared with the VIR-N1-Storm group). 106 (26%) of 403 patients in the VIR-N1-Low group died within 90 days (OR for death 0·39, 95% CI 0·26–0·57; p[removed]11 página

    Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID‑19

    Get PDF
    Background. COVID-19 can course with respiratory and extrapulmonary disease. SARS-CoV-2 RNA is detected in respiratory samples but also in blood, stool and urine. Severe COVID-19 is characterized by a dysregulated host response to this virus. We studied whether viral RNAemia or viral RNA load in plasma is associated with severe COVID-19 and also to this dysregulated response. Methods. A total of 250 patients with COVID-19 were recruited (50 outpatients, 100 hospitalized ward patients and 100 critically ill). Viral RNA detection and quantification in plasma was performed using droplet digital PCR, targeting the N1 and N2 regions of the SARS-CoV-2 nucleoprotein gene. The association between SARS-CoV-2 RNAemia and viral RNA load in plasma with severity was evaluated by multivariate logistic regression. Correlations between viral RNA load and biomarkers evidencing dysregulation of host response were evaluated by calculating the Spearman correlation coefficients. Results. The frequency of viral RNAemia was higher in the critically ill patients (78%) compared to ward patients (27%) and outpatients (2%) (p < 0.001). Critical patients had higher viral RNA loads in plasma than non-critically ill patients, with non-survivors showing the highest values. When outpatients and ward patients were compared, viral RNAemia did not show significant associations in the multivariate analysis. In contrast, when ward patients were compared with ICU patients, both viral RNAemia and viral RNA load in plasma were associated with critical illness (OR [CI 95%], p): RNAemia (3.92 [1.183–12.968], 0.025), viral RNA load (N1) (1.962 [1.244–3.096], 0.004); viral RNA load (N2) (2.229 [1.382–3.595], 0.001). Viral RNA load in plasma correlated with higher levels of chemokines (CXCL10, CCL2), biomarkers indicative of a systemic inflammatory response (IL-6, CRP, ferritin), activation of NK cells (IL-15), endothelial dysfunction (VCAM-1, angiopoietin-2, ICAM-1), coagulation activation (D-Dimer and INR), tissue damage (LDH, GPT), neutrophil response (neutrophils counts, myeloperoxidase, GM-CSF) and immunodepression (PD-L1, IL-10, lymphopenia and monocytopenia). Conclusions. SARS-CoV-2 RNAemia and viral RNA load in plasma are associated with critical illness in COVID-19. Viral RNA load in plasma correlates with key signatures of dysregulated host responses, suggesting a major role of uncontrolled viral replication in the pathogenesis of this disease.This work was supported by awards from the Canadian Institutes of Health Research, the Canadian 2019 Novel Coronavirus (COVID-19) Rapid Research Funding initiative (CIHR OV2 – 170357), Research Nova Scotia (DJK), Atlantic Genome/Genome Canada (DJK), Li-Ka Shing Foundation (DJK), Dalhousie Medical Research Foundation (DJK), the “Subvenciones de concesión directa para proyectos y programas de investigación del virus SARS‐CoV2, causante del COVID‐19”, FONDO–COVID19, Instituto de Salud Carlos III (COV20/00110, CIBERES, 06/06/0028), (AT) and fnally by the “Convocatoria extraordinaria y urgente de la Gerencia Regional de Salud de Castilla y León, para la fnanciación de proyectos de investigación en enfermedad COVID-19” (GRS COVID 53/A/20) (CA). DJK is a recipient of the Canada Research Chair in Translational Vaccinology and Infammation. APT was funded by the Sara Borrell Research Grant CD018/0123 funded by Instituto de Salud Carlos III and co-fnanced by the European Development Regional Fund (A Way to Achieve Europe programme). The funding sources did not play any role neither in the design of the study and collection, not in the analysis, in the interpretation of data or in writing the manuscript

    The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients

    Get PDF
    Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation

    Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort

    Full text link
    Background Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster.Methods Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3.Results Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.Conclusions During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis

    Evidence of Continued CD4+ and CD8+ T Cell Activity After SARS-COV-2 Clearance in a Late COVID-19 Pneumonia Heart Transplant Patient

    Get PDF
    We have studied an unvaccinated heart transplant 64-year-old patient admitted for low-grade fever, dry cough, general malaise, and bilateral interstitial infiltrates, after two months of a diagnosis of coronavirus disease 2019 (COVID-19) bilateral pneumonia. A bronchoalveolar lavage and transbronchial biopsy were performed. Bacterial, mycotic and viral infections were ruled out including repeated reverse transcription polymerase chain reaction (RT-PCR) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).Diffuse thickening of alveolar septa with fibrosis and infiltration of lymphocytes and macrophages into the alveolar septa with aggregates of CD4+ and CD8+ T cells with positive immunolabelling for granzyme B were observed, indicating a continuing cytotoxic process that might have induced proliferation and fibrosis.An intense ongoing immunopathological cellular reaction, potentially triggered by SARS-CoV-2 overcoming the anti-inflammatory and immunomodulatory effects of the immunosuppressive drugs is suggested by these findings, opening to debate the usual approach of minimizing immunosuppression after COVID-19 in transplant patients when presence of SARS-CoV-2 has been ruled out.Fil: Klein, Francisco R,. Fundación Favaloro; ArgentinaFil: Renedo, María F.. Fundación Favaloro; ArgentinaFil: Vigliano, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentin

    Comparative Pharmacokinetics, Tissue Distributions, and Effects on Renal Function of Novel Polymeric Formulations of Amphotericin B and Amphotericin B-Deoxycholate in Rats

    Get PDF
    The pharmacokinetic profiles of a traditional formulation of amphotericin B (Fungizone) and novel nanosphere and mixed micelle delivery systems developed for amphotericin B were compared and described. Six groups of male Wistar rats received intravenous injections of the different formulations. Plasma and tissue samples were obtained at 11 different times after dosing, with three animals used each time. The amphotericin B concentrations in plasma and tissues were analyzed by high-performance liquid chromatography. The plasma drug concentration-time profiles were best described by a two-compartment model. Models that described the observed single or double peak disposition kinetics in kidney, liver, and spleen were also developed. Parameter estimates from those models show that components of the formulation such as poloxamer 188, which is present in all new formulations, seem to play an important role in the rate of drug uptake by the tissues; in general, the levels of amphotericin B in tissues were increased after the administration of the new formulations compared with those after the administration of Fungizone. The increment in the baseline plasma creatinine level was used as an index of renal function. All formulations increased this baseline value, but the novel formulations exhibited fewer renal effects than Fungizone did. However, a direct relationship between drug exposure in the kidneys and development of renal damage could not be found

    Infective Endocarditis in Hypertrophic Cardiomyopathy

    No full text
    Background: Infective endocarditis (IE) is a well-known complication of hypertrophic cardiomyopathy (HCM). Intracardiacdevice (ID) implantation for the treatment of HCM is an additional factor that increases the risk of IE.Objective: The aim of this study was to assess the clinical manifestations and prognosis of IE in patients with HCM.Methods: A retrospective, descriptive and observational study assessed the occurrence of IE and the clinical characteristicsof a population with HCM from June 1992 to January 2014, with median follow-up of 7.5 years.Results: The study evaluated 646 patients with HCM. Left ventricular outflow tract obstruction (LVOTO) was present in38.5% (n=230) of patients and 22% (n=129) had an ID. The incidence of IE was 1.9%. Twelve episodes were confirmed, 7valvular [7/230 (3.04%)] and 5 in ID, 3 in pacemakers and 2 in implantable cardioverter defibrillators [5/129 (6.45%)]. Patientswith valvular IE had resting mean gradient of 48±37 mmHg and during Valsalva maneuver of 126±44 mmHg, respondingto medical treatment in all cases. Infective endocarditis in ID was resolved with percutaneous removal in 5 patients. Onepatient of the valvular group (8%) required valve replacement. No deaths were reported.Conclusions: The incidence of IE in HCM is low. There are two defined populations: left valvular IE confined to patients withLVOTO and IE for ID. Patients with HCM without LVOTO or ID did not present IE.Introducción: La endocarditis infecciosa (EI) es una complicación reconocida de la miocardiopatía hipertrófica (MCH); elimplante de dispositivos intracavitarios (DI) para el tratamiento de la MCH agrega un factor que incrementa el riesgo de EI.Objetivo: Analizar la incidencia, las manifestaciones clínicas y el pronóstico de la EI en pacientes con MCH.Material y métodos: Estudio retrospectivo, descriptivo y observacional. Se evaluaron la ocurrencia de EI y las característicasclínicas de una población con diagnóstico de MCH desde junio de 1992 hasta enero de 2014, con una mediana de seguimientode 7,5 años.Resultados: Se evaluaron 646 pacientes con MCH. El 38,5% (n = 230) presentó obstrucción al tracto de salida del ventrículoizquierdo (OTSVI) y el 22% (n = 129) tenía un DI. La incidencia de EI fue del 1,9%. Se evidenciaron 12 episodios, 7 valvulares[7/230 (3,04%)] y 5 en DI, 3 en marcapasos y 2 en cardiodesfibrilador [5/129 (6,45%)]. Los pacientes con EI valvular presentabanun gradiente promedio de 48 ± 37 mm Hg en reposo y de 126 ± 44 mm Hg durante Valsalva. Todos respondieron altratamiento médico. En 5 pacientes con EI en el DI se efectuó la extracción percutánea. Un paciente (8%) del grupo valvularrequirió reemplazo; ningún paciente falleció.Conclusiones: La EI en la MCH tiene una incidencia baja. Existen dos poblaciones definidas: EI valvular izquierda, confinadaen pacientes con OTSVI y EI por DI. Los pacientes con MCH sin OTSVI ni DI no presentaron EI
    corecore