18 research outputs found

    An extended siderophore suite from Synechococcus sp. PCC 7002 revealed by LC-ICPMS-ESIMS

    Get PDF
    Author Posting. Ā© The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Royal Society of Chemistry for personal use, not for redistribution. The definitive version was published in Metallomics 7 (2015): 877-884, doi:10.1039/C5MT00005J.Siderophores are thought to play an important role in iron cycling in the ocean, but relatively few marine siderophores have been identified. Sensitive, high throughput methods hold promise for expediting the discovery and characterization of new siderophores produced by marine microbes. We developed a methodology for siderophore characterization that combines liquid chromatography (LC) inductively coupled plasma mass spectrometry (ICPMS) with high resolution electrospray ionization mass spectrometry (ESIMS). To demonstrate this approach, we investigated siderophore production by the marine cyanobacteria Synechococcus sp. PCC 7002. Three hydroxamate siderophores, synechobactin A-C, have been previously isolated and characterized from this strain. These compounds consist of an iron binding head group attached to a fatty acid side chain of variable length (C12, C10, and C8 respectively). In this study, we detected six iron-containing compounds in Synechococcus sp. PCC 7002 media by LC-ICPMS. To identify the molecular ions of these siderophores, we aligned the chromatographic retention times of peaks from the LC-ICPMS chromatogram with features detected from LC-ESIMS spectra using an algorithm designed to recognize metal isotope patterns. Three of these compounds corresponded to synechobactins A (614 m/z), B (586m/z), and C (558m/z). The MS2 spectra of these compounds revealed diagnostic synechobactin fragmentation patterns which were used to confirm the identity of the three unknown compounds (600, 628, and 642 m/z) as new members of the synechobactin suite with side chain lengths of 11, 13, and 14 carbons. These results demonstrate the potential of combined LCMS techniques for the identification of novel iron-organic complexes.This work was supported by the National Science Foundation program in Chemical Oceanography (OCE-1356747), and by the National Science Foundation Science and Technology Center for Microbial Oceanography Research and Education (C-MORE; DBI-0424599).2016-03-1

    Dynamic mercury methylation and demethylation in oligotrophic marine water

    Get PDF
    Ā© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 15 (2018): 6451-6460, doi:10.5194/bg-15-6451-2018.Mercury bioaccumulation in open-ocean food webs depends on the net rate of inorganic mercury conversion to monomethylmercury in the water column. We measured significant methylation rates across large gradients in oxygen utilization in the oligotrophic central Pacific Ocean. Overall, methylation rates over 24h incubation periods were comparable to those previously published from Arctic and Mediterranean waters despite differences in productivity between these marine environments. In contrast to previous studies that have attributed Hg methylation to heterotrophic bacteria, we measured higher methylation rates in filtered water compared to unfiltered water. Furthermore, we observed enhanced demethylation of newly produced methylated mercury in incubations of unfiltered water relative to filtered water. The addition of station-specific bulk filtered particulate matter, a source of inorganic mercury substrate and other possibly influential compounds, did not stimulate sustained methylation, although transient enhancement of methylation occurred within 8h of addition. The addition of dissolved inorganic cobalt also produced dramatic, if transient, increases in mercury methylation. Our results suggest important roles for noncellular or extracellular methylation mechanisms and demethylation in determining methylated mercury concentrations in marine oligotrophic waters. Methylation and demethylation occur dynamically in the open-ocean water column, even in regions with low accumulation of methylated mercury.This work was funded by the National Science Foundation in a Chemical Oceanography Program Grant (OCE-1031271) awarded to Carl H. Lamborg and Mak A. Saito and a graduate student fellowship to Kathleen M. Munson

    Structural characterization of natural nickel and copper binding ligands along the US GEOTRACES Eastern Pacific Zonal Transect

    Get PDF
    Ā© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Marine Science 3 (2016): 243, doi:10.3389/fmars.2016.00243.Organic ligands form strong complexes with many trace elements in seawater. Various metals can compete for the same ligand chelation sites, and the final speciation of bound metals is determined by relative binding affinities, concentrations of binding sites, uncomplexed metal concentrations, and association/dissociation kinetics. Different ligands have a wide range of metal affinities and specificities. However, the chemical composition of these ligands in the marine environment remains poorly constrained, which has hindered progress in modeling marine metal speciation. In this study, we detected and characterized natural ligands that bind copper (Cu) and nickel (Ni) in the eastern South Pacific Ocean with liquid chromatography tandem inductively coupled plasma mass spectrometry (LC-ICPMS), and high-resolution electrospray ionization mass spectrometry (ESIMS). Dissolved Cu, Ni, and ligand concentrations were highest near the coast. Chromatographically unresolved polar compounds dominated ligands isolated near the coast by solid phase extraction. Offshore, metal and ligand concentrations decreased, but several new ligands appeared. One major ligand was detected that bound both Cu2+ and Ni2+. Based on accurate mass and fragmentation measurements, this compound has a molecular formula of [C20H21N4O8S2+M]+ (M = metal isotope) and contains several azole-like metal binding groups. Additional lipophilic Ni complexes were also present only in oligotrophic waters, with masses of 649, 698, and 712 m/z (corresponding to the 58Ni metal complex). Molecular formulae of [C32H54N3O6S2Ni]+ and [C33H56N3O6S2Ni]+ were determined for two of these compounds. Addition of Cu and Ni to the samples also revealed the presence of additional compounds that can bind both Ni and Cu. Although these specific compounds represent a small fraction of the total dissolved Cu and Ni pool, they highlight the compositional diversity and spatial heterogeneity of marine Ni and Cu ligands, as well as variability in the extent to which different metals in the same environment compete for ligand binding.Support was provided by the National Science Foundation (NSF) program in Chemical Oceanography (OCE-1356747, OCE-1233261, OCE-1233733, OCE-1233502, and OCE-1237034), the NSF Science and Technology Center for Microbial Oceanography Research and Education (C-MORE; DBI-0424599), the Gordon and Betty Moore Foundation (#3298 and 3934), and the Simons Foundation (#329108, DR)

    Element-selective targeting of nutrient metabolites in environmental samples by inductively coupled plasma mass spectrometry and electrospray ionization mass spectrometry

    Get PDF
    Ā© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Li, J., Boiteau, R. M., Babcock-Adams, L., Acker, M., Song, Z., McIlvin, M. R., & Repeta, D. J. Element-selective targeting of nutrient metabolites in environmental samples by inductively coupled plasma mass spectrometry and electrospray ionization mass spectrometry. Frontiers in Marine Science, 8, (2021): 630494, https://doi.org/10.3389/fmars.2021.630494.Metabolites that incorporate elements other than carbon, nitrogen, hydrogen and oxygen can be selectively detected by inductively coupled mass spectrometry (ICPMS). When used in parallel with chromatographic separations and conventional electrospray ionization mass spectrometry (ESIMS), ICPMS allows the analyst to quickly find, characterize and identify target metabolites that carry nutrient elements (P, S, trace metals; ā€œnutrient metabolitesā€), which are of particular interest to investigations of microbial biogeochemical cycles. This approach has been applied to the study of siderophores and other trace metal organic ligands in the ocean. The original method used mass search algorithms that relied on the ratio of stable isotopologues of iron, copper and nickel to assign mass spectra collected by ESIMS to metabolites carrying these elements detected by ICPMS. However, while isotopologue-based mass assignment algorithms were highly successful in characterizing metabolites that incorporate some trace metals, they do not realize the whole potential of the ICPMS/ESIMS approach as they cannot be used to assign the molecular ions of metabolites with monoisotopic elements or elements for which the ratio of stable isotopes is not known. Here we report a revised ICPMS/ESIMS method that incorporates a number of changes to the configuration of instrument hardware that improves sensitivity of the method by a factor of 4ā€“5, and allows for more accurate quantitation of metabolites. We also describe a new suite of mass search algorithms that can find and characterize metabolites that carry monoisotopic elements. We used the new method to identify siderophores in a laboratory culture of Vibrio cyclitrophicus and a seawater sample collected in the North Pacific Ocean, and to assign molecular ions to monoisotopic cobalt and iodine nutrient metabolites in extracts of a laboratory culture of the marine cyanobacterium Prochorococcus MIT9215.This work was generously supported by the National Science Foundation grant OCE-1829761 to RB and OCE-1356747 and -1736280 to DR. DR also received generous support from the Simons Foundation Life Sciences Project Award 49476

    Siderophore-Based Microbial Adaptations to Iron Scarcity Across the Eastern Pacific Ocean

    Get PDF
    Nearly all iron dissolved in the ocean is complexed by strong organic ligands of unknown composition. The effect of ligand composition on microbial iron acquisition is poorly understood, but amendment experiments using model ligands show they can facilitate or impede iron uptake depending on their identity. Here we show that siderophores, organic compounds synthesized by microbes to facilitate iron uptake, are a dynamic component of the marine ligand pool in the eastern tropical Pacific Ocean. Siderophore concentrations in iron-deficient waters averaged 9 pM, up to fivefold higher than in iron-rich coastal and nutrient-depleted oligotrophic waters, and were dominated by amphibactins, amphiphilic siderophores with cell membrane affinity. Phylogenetic analysis of amphibactin biosynthetic genes suggests that the ability to produce amphibactins has transferred horizontally across multiple Gammaproteobacteria, potentially driven by pressures to compete for iron. In coastal and oligotrophic regions of the eastern Pacific Ocean, amphibactins were replaced with lower concentrations (1-2 pM) of hydrophilic ferrioxamine siderophores. Our results suggest that organic ligand composition changes across the surface ocean in response to environmental pressures. Hydrophilic siderophores are predominantly found across regions of the ocean where iron is not expected to be the limiting nutrient for the microbial community at large. However, in regions with intense competition for iron, some microbes optimize iron acquisition by producing siderophores that minimize diffusive losses to the environment. These siderophores affect iron bioavailability and thus may be an important component of the marine iron cycle

    Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology

    Get PDF
    Extensive microdiversity within Prochlorococcus, the most abundant marine cyanobacterium, occurs at scales from a single droplet of seawater to ocean basins. To interpret the structuring role of variations in genetic potential, as well as metabolic and physiological acclimation, we developed a mechanistic constraint-based modeling framework that incorporates the full suite of genes, proteins, metabolic reactions, pigments, and biochemical compositions of 69 sequenced isolates spanning the Prochlorococcus pangenome. Optimizing each strain to the local, observed physical and chemical environment along an Atlantic Ocean transect, we predicted variations in strain-specific patterns of growth rate, metabolic configuration, and physiological state, defining subtle niche subspaces directly attributable to differences in their encoded metabolic potential. Predicted growth rates covaried with observed ecotype abundances, affirming their significance as a measure of fitness and inferring a nonlinear density dependence of mortality. Our study demonstrates the potential to interpret global-scale ecosystem organization in terms of cellular-scale processes

    Bacterial quorum-sensing signal arrests phytoplankton cell division and impacts virus-induced mortality

    Get PDF
    Ā© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pollara, S. B., Becker, J. W., Nunn, B. L., Boiteau, R., Repeta, D., Mudge, M. C., Downing, G., Chase, D., Harvey, E. L., & Whalen, K. E. Bacterial quorum-sensing signal arrests phytoplankton cell division and impacts virus-induced mortality. Msphere, 6(3), (2021): e00009-21, https://doi.org/10.1128/mSphere.00009-21.Interactions between phytoplankton and heterotrophic bacteria fundamentally shape marine ecosystems by controlling primary production, structuring marine food webs, mediating carbon export, and influencing global climate. Phytoplankton-bacterium interactions are facilitated by secreted compounds; however, linking these chemical signals, their mechanisms of action, and their resultant ecological consequences remains a fundamental challenge. The bacterial quorum-sensing signal 2-heptyl-4-quinolone (HHQ) induces immediate, yet reversible, cellular stasis (no cell division or mortality) in the coccolithophore Emiliania huxleyi; however, the mechanism responsible remains unknown. Using transcriptomic and proteomic approaches in combination with diagnostic biochemical and fluorescent cell-based assays, we show that HHQ exposure leads to prolonged S-phase arrest in phytoplankton coincident with the accumulation of DNA damage and a lack of repair despite the induction of the DNA damage response (DDR). While this effect is reversible, HHQ-exposed phytoplankton were also protected from viral mortality, ascribing a new role of quorum-sensing signals in regulating multitrophic interactions. Furthermore, our data demonstrate that in situ measurements of HHQ coincide with areas of enhanced micro- and nanoplankton biomass. Our results suggest bacterial communication signals as emerging players that may be one of the contributing factors that help structure complex microbial communities throughout the ocean.Funding for this work was supported by an NSF grant (OCE-1657808) awarded to K.E.W. and E.L.H. K.E.W. was also supported by a faculty research grant from Haverford College as well as funding from the Koshland Integrated Natural Science Center and Green Fund at Haverford College. E.L.H. was also supported by a Sloan Foundation research fellowship. B.L.N. was supported by an NSF grant (OCE-1633939). M.C.M. was supported by an NIH training grant (T32 HG000035). Mass spectrometry was partially supported by the University of Washington Proteomics Resource (UWPR95794). D.R. was supported by funding through the Gordon and Betty Moore Foundation (grant 6000), a Simons Collaboration for Ocean Processes and Ecology grant (329108), and an NSF grant (OCE-1736280). R.B. was supported by an NSF graduate research fellowship and an NSF grant (OCE-1829761)

    Molecular determination of marine iron ligands by mass spectrometry

    Get PDF
    Thesis: Ph. D., Joint Program in Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2016.Page 231 blank. Cataloged from PDF version of thesis.Includes bibliographical references.Marine microbes produce a wide variety of metal binding organic ligands that regulate the solubility and availability of biologically important metals such as iron, copper, cobalt, and zinc. In marine environments where the availability of iron limits microbial growth and carbon fixation rates, the ability to access organically bound iron confers a competitive advantage. Thus, the compounds that microbes produced to acquire iron play an important role in biogeochemical carbon and metal cycling. However, the source, abundance, and identity of these compounds are poorly understood. To investigate these processes, sensitive methodologies were developed to gain a compound-specific window into marine iron speciation by combining trace metal clean sample collection and chromatography with inductively coupled plasma mass spectrometry (LCICPMS) and electrospray ionization mass spectrometry (LC-ESIMS). Coupled with isotope pattern assisted search algorithms, these tools provide a means to quantify and isolate specific iron binding ligands from seawater and marine cultures, identify them based on their mass and fragmentation spectra, and investigate their metal binding kinetics. Using these techniques, we investigated the distribution and diversity of marine iron binding ligands. In cultures, LC-ICPMS-ESIMS was used to identify new members of siderophore classes produced by marine cyanobacteria and heterotrophic bacteria, including synechobactins and marinobactins. Applications to natural seawater samples from the Pacific Ocean revealed a wide diversity of both known and novel metal compounds that are linked to specific nutrient regimes. Ferrioxamines B, E, and G were identified in productive coastal waters near California and Peru, in oligotrophic waters of the North and South Pacific Gyre, and in association with zooplankton grazers. Siderophore concentrations were up to five-fold higher in iron-deficient offshore waters (9pM) and were dominated by amphibactins, amphiphilic siderophores that partition into cell membranes. Furthermore, synechobactins were detected within nepheloid layers along the continental shelf. These siderophores reflect adaptations that impact dissolved iron bioavailability and thus have important consequences for marine ecosystem community structures and primary productivity. The ability to map and characterize these compounds has opened new opportunities to better understand mechanisms that link metals with the microbes that use them.by Rene M. Boiteau.Ph. D

    Mechanisms of Zn II

    No full text

    Distinct Siderophores Contribute to Iron Cycling in the Mesopelagic at Station ALOHA

    Get PDF
    The distribution of dissolved iron (Fe), total organic Fe-binding ligands, and siderophores were measured between the surface and 400 m at Station ALOHA, a long term ecological study site in the North Pacific Subtropical Gyre. Dissolved Fe concentrations were low throughout the water column and strong organic Fe-binding ligands exceeded dissolved Fe at all depths; varying from 0.9 nmol Lāˆ’1 in the surface to 1.6 nmol Lāˆ’1 below 150 m. Although Fe does not appear to limit microbial production, we nevertheless found siderophores at nearly all depths, indicating some populations of microbes were responding to Fe stress. Ferrioxamine siderophores were most abundant in the upper water column, with concentrations between 0.1 and 2 pmol Lāˆ’1, while a suite of amphibactins were found below 200 m with concentrations between 0.8 and 11 pmol Lāˆ’1. The distinct vertical distribution of ferrioxamines and amphibactins may indicate disparate strategies for acquiring Fe from dust in the upper water column and recycled organic matter in the lower water column. Amphibactins were found to have conditional stability constants (log KFeL1,Feā€²cond) ranging from 12.0 to 12.5, while ferrioxamines had much stronger conditional stability constants ranging from 14.0 to 14.4, within the range of observed L1 ligands by voltammetry. We used our data to calculate equilibrium Fe speciation at Station ALOHA to compare the relative concentration of inorganic and siderophore complexed Fe. The results indicate that the concentration of Fe bound to siderophores was up to two orders of magnitude higher than inorganic Fe, suggesting that even if less bioavailable, siderophores were nevertheless a viable pathway for Fe acquisition by microbes at our study site. Finally, we observed rapid production of ferrioxamine E by particle-associated bacteria during incubation of freshly collected sinking organic matter. Fe-limitation may therefore be a factor in regulating carbon metabolism and nutrient regeneration in the mesopelagic
    corecore