32 research outputs found

    Cerebral palsy with dislocated hip and scoliosis: what to deal with first?

    Get PDF
    Purpose: Hip dislocation and scoliosis are common in children with cerebral palsy (CP). Hip dislocation develops in 15% and 20% of children with CP, mainly between three and six years of age and especially in the spastic and dyskinetic subtypes. The risk of scoliosis increases with age and increasing disability as expressed by the Gross Motor Function Score. Methods: A hip surveillance programme and early surgical treatment have been shown to reduce the hip dislocation, but it remains unclear if a similar programme could reduce the need for neuromuscular scoliosis. When hip dislocation and neuromuscular scoliosis are co-existent, there appears to be no clear guidelines as to which of these deformities should be addressed first: hip or spine. Results: Hip dislocation or windswept deformity may cause pelvic obliquity and initiate scoliosis, while neuromuscular scoliosis itself leads to pelvic obliquity and may increase the risk of hip dislocation especially on the high side. It remains unclear if treating imminent hip dislocation can prevent development of scoliosis and vice versa, but they may present at the same time for surgery. Current expert opinion suggests that when hip dislocation and scoliosis present at the same time, scoliosis associated pelvic obliquity should be corrected before hip reconstruction. If the patient is not presenting with pelvic obliquity the more symptomatic condition should be addressed first. Conclusion: Early identification of hip displacement and neuromuscular scoliosis appears to be important for better surgical outcomes

    The potential of spring distraction to dynamically correct complex spinal deformities in the growing child

    Get PDF
    Purpose: Current treatment of progressive early onset scoliosis involves growth-friendly instrumentation if conservative treatment fails. These implants guide growth by passive sliding or repeated lengthenings. None of these techniques provide dynamic correction after implantation. We developed the spring distraction system (SDS), by using one or multiple compressed springs positioned around a standard sliding rod, to provide active continuous distraction of the spine to stimulate growth and further correction. The purpose of this study was to determine feasibility and proof of concept of the SDS. Methods: We developed a versatile, dynamic spring distraction system for patients who would benefit from active continuous distraction. This prospective case series evaluates four patients with exceptional and progressive congenital spine deformities. Results: Four patients had a mean age of 6.8 years at surgery with a mean follow-up of 36 months (range 25–45). The mean progressive thoracic lordosis, which was the reason for initiating surgical treatment in two patients, changed from 32° lordosis preoperatively to 1° kyphosis post-operatively. During follow-up, this further improved to 32° thoracic kyphosis. In the two other patients, with cervicothorcacic scoliosis, the main coronal curve improved from 79° pre-operatively to 56° post-operatively and further improved to 42°. The mean T1-S1 spine growth during follow-up for all patients was 1.3 cm/year. There was one reoperation because of skin problems and no device-failures. Conclusion: These early results show the feasibility and the proof of concept of spring-based distraction as a dynamic growth-enhancing system with the potential of further correction of the deformity after implantation

    Induction of a representative idiopathic-like scoliosis in a porcine model using a multidirectional dynamic spring-based system

    Get PDF
    BACKGROUND CONTEXT: Scoliosis is a 3D deformity of the spine in which vertebral rotation plays an important role. However, no treatment strategy currently exists that primarily applies a continuous rotational moment over a long period of time to the spine, while preserving its mobility. We developed a dynamic, torsional device that can be inserted with standard posterior instrumentation. The feasibility of this implant to rotate the spine and preserve motion was tested in growing mini-pigs. PURPOSE: To test the quality and feasibility of the torsional device to induce the typical axial rotation of scoliosis while maintaining growth and mobility of the spine. STUDY DESIGN: Preclinical animal study with 14 male, 7 month old Gottingen mini-pigs. Comparison of two scoliosis induction methods, with and without the torsional device, with respect to 3D deformity and maintenance of the scoliosis after removal of the implants. METHODS: Fourteen mini-pigs received either a unilateral tether-only (n=6) or a tether combined with a contralateral torsional device (n=8). X-rays and CT-scans were made post-operative, at 8 weeks and at 12 weeks. Flexibility of the spine was assessed at 12 weeks. In 3 mini-pigs per condition, the implants were removed and the animals were followed until no further correction was expected. RESULTS: At 12 weeks the tether-only group yielded a coronal Cobb angle of 16.8±3.3°For the tether combined with the torsional device this was 22.0±4.0°. The most prominent difference at 12 weeks was the axial rotation with 3.6±2.8° for the tether-only group compared to 18.1±4.6° for the tether-torsion group. Spinal growth and flexibility remained normal and comparable for both groups. After removal of the devices, the induced scoliosis reduced by 41% in both groups. There were no adverse tissue reactions, implant complications or infections. CONCLUSION: The present study indicates the ability of the torsional device combined with a tether to induce a flexible idiopathic-like scoliosis in mini-pigs. The torsional device was necessary to induce the typical axial rotation found in human scoliosis. Clinical significance: The investigated torsional device could induce apical rotation in a flexible and growing spine. Whether this may be used to reduce a scoliotic deformity remains to be investigated

    A multipurpose, adolescent idiopathic scoliosis-specific, short MRI protocol: A feasibility study in volunteers

    Get PDF
    Introduction: Visualization of scoliosis typically requires ionizing radiation (radiography and CT) to visualize bony anatomy. MRI is often additionally performed to screen for neural axis abnormalities. We propose a 14-minutes radiation-free scoliosis-specific MRI protocol, which combines MRI and MRI-based synthetic CT images to visualize soft and osseous structures in one examination. We assess the ability of the protocol to visualize landmarks needed to detect 3D patho-anatomical changes, screen for neural axis abnormalities, and perform surgical planning and navigation. Methods: 18 adult volunteers were scanned on 1.5 T MR-scanner using 3D T2-weighted and synthetic CT sequences. A predefined checklist of relevant landmarks was used for the parameter assessment by three readers. Parameters included Cobb angles, rotation, torsion, segmental height, area and centroids of Nucleus Pulposus and Intervertebral Disc. Precision, reliability and agreement between the readers measurements were evaluated. Results: 91 % of Likert-based questions scored ≥ 4, indicating moderate to high confidence. Precision of 3D dot positioning was 1.0 mm. Precision of angle measurement was 0.6° (ICC 0.98). Precision of vertebral and IVD height measurements was 0.4 mm (ICC 0.99). Precision of area measurement for NP was 8 mm2 (ICC 0.55) and for IVD 18 mm2 (ICC 0.62) for IVD. Precision of centroid measurement for NP was 1.3 mm (ICC 0.88–0.92) and for IVD 1.1 mm (ICC 0.88–91). Conclusions: The proposed MRI protocol with synthetic CT reconstructions, has high precision, reliability and agreement between the readers for multiple scoliosis-specific measurements. It can be used to study scoliosis etiopathogenesis and to assess 3D spinal morphology

    A roadmap to surgery in osteogenesis imperfecta: results of an international collaboration of patient organizations and interdisciplinary care teams

    Get PDF
    Background and purpose - Involvement of patient organizations is steadily increasing in guidelines for treatment of various diseases and conditions for better care from the patient's viewpoint and better comparability of outcomes. For this reason, the Osteogenesis Imperfecta Federation Europe and the Care4BrittleBones Foundation convened an interdisciplinary task force of 3 members from patient organizations and 12 healthcare professionals from recognized centers for interdisciplinary care for children and adults with osteogenesis imperfecta (OI) to develop guidelines for a basic roadmap to surgery in OI.Methods - All information from 9 telephone conferences, expert consultations, and face-to-face meetings during the International Conference for Quality of Life for Osteogenesis Imperfecta 2019 was used by the task force to define themes and associated recommendations.Results - Consensus on recommendations was reached within 4 themes: the interdisciplinary approach, the surgical decision-making conversation, surgical technique guidelines for OI, and the feedback loop after surgery.Interpretation - The basic guidelines of this roadmap for the interdisciplinary approach to surgical care in children and adults with OI is expected to improve standardization of clinical practice and comparability of outcomes across treatment centers
    corecore