71 research outputs found

    An Offline Metric for the Debiasedness of Click Models

    Full text link
    A well-known problem when learning from user clicks are inherent biases prevalent in the data, such as position or trust bias. Click models are a common method for extracting information from user clicks, such as document relevance in web search, or to estimate click biases for downstream applications such as counterfactual learning-to-rank, ad placement, or fair ranking. Recent work shows that the current evaluation practices in the community fail to guarantee that a well-performing click model generalizes well to downstream tasks in which the ranking distribution differs from the training distribution, i.e., under covariate shift. In this work, we propose an evaluation metric based on conditional independence testing to detect a lack of robustness to covariate shift in click models. We introduce the concept of debiasedness and a metric for measuring it. We prove that debiasedness is a necessary condition for recovering unbiased and consistent relevance scores and for the invariance of click prediction under covariate shift. In extensive semi-synthetic experiments, we show that our proposed metric helps to predict the downstream performance of click models under covariate shift and is useful in an off-policy model selection setting.Comment: SIGIR23 - Full pape

    Modeling ASR Ambiguity for Dialogue State Tracking Using Word Confusion Networks

    Full text link
    Spoken dialogue systems typically use a list of top-N ASR hypotheses for inferring the semantic meaning and tracking the state of the dialogue. However ASR graphs, such as confusion networks (confnets), provide a compact representation of a richer hypothesis space than a top-N ASR list. In this paper, we study the benefits of using confusion networks with a state-of-the-art neural dialogue state tracker (DST). We encode the 2-dimensional confnet into a 1-dimensional sequence of embeddings using an attentional confusion network encoder which can be used with any DST system. Our confnet encoder is plugged into the state-of-the-art 'Global-locally Self-Attentive Dialogue State Tacker' (GLAD) model for DST and obtains significant improvements in both accuracy and inference time compared to using top-N ASR hypotheses.Comment: Accepted at Interspeech-202
    • …
    corecore