68 research outputs found

    Potential methane and nitrous oxide production and respiration rates from penguin and seal colony tundra soils during freezing–thawing cycles under different water contents in coastal Antarctica

    Get PDF
    In coastal Antarctica, frequent freezing–thawing cycles (FTCs) and changes to the hydrological conditions may affect methane (CH4) and nitrous oxide (N2O) production and respiration rates in tundra soils, which are difficult to observe in situ. Tundra soils including ornithogenic tundra soil (OAS), seal colony soil (SCS) and emperor penguin colony soil (EPS) were collected. In laboratory, we investigated the effects of FTCs and water addition on potential N2O and CH4 production and respiration rates in the soils. The CH4 fluxes from OAS and SCS were much less than that from EPS. Meanwhile, the N2O fluxes from OAS and EPS were much less than that from SCS. The N2O production rates from all soils were extremely low during freezing, but rapidly increased following thawing. In all cases, FTC also induced considerably enhanced soil respiration, indicating that soil respiration response was sensitive to the FTCs. The highest cumulative rates of CH4, N2O and CO2 were 59.5 mg CH4-C·kg−1 in EPS, 6268.8 μg N2O-N·kg−1 in SCS and 3522.1 mg CO2-C·kg−1 in OAS. Soil water addition had no significant effects on CH4 production and respiration rates, but it could reduce N2O production in OAS and EPS, and it stimulated N2O production in SCS. Overall, CH4 and N2O production rates showed a trade-off relationship during the three FTCs. Our results indicated that FTCs greatly stimulated soil N2O and CO2 production, and water increase has an important effect on soil N2O production in coastal Antarctic tundra

    Iodide and chloride ions diffusivity, pore characterization and microstructures of concrete incorporating ground granulated blast furnace slag

    Get PDF
    Innovative approaches are under research to study the resistance of chloride ion penetration in concrete containing chloride ions, to minimize the impact of chloride ion penetration test errors in coastal reinforced concrete (RC), which is helpful to the design of coastal RC structures. In this study, the diffusion depth, free ion concentration and diffusion coefficient of chloride, iodide ions with different curing ages and GGBFS content were measured by the Rapid Chloride Migration Test (RCM) and Rapid Iodide Migration tests (RIM). The SEM-EDS and MIP were used to analyze the microstructures, pore size distribution and the hydrated products. The results show that the performance of GGBFS concrete against the diffusion of corrosive ions is affected by the curing age and the content of GGBFS. With the increase of GGBFS content, especially concrete with 60% GGBFS, the influence of chloride, iodide ion penetrating into concrete gradually becomes smaller. The long-age curing system is more conducive to the concrete resistance to the migration and diffusion of chloride, iodine ions. Compared with the ordinary concrete, the total porosity of concrete mixed with GGBFS is lower, the internal microstructures have fewer cracks and defects, the density is better, and the diffusion coefficient of chloride and iodide ions is also lower. In addition, using the concept of corrosive ion adjustment coefficient (conversion coefficient of diffusion between chloride ion and iodide ion) and applying the data regression analysis (DRA), it is found that there is a good quadratic parabolic function relationship between the GGBFS content and the ions adjustment coefficient

    Potential methane production rates and its carbon isotopic composition from ornithogenic tundra soils in coastal Antarctic

    Get PDF
    Methane (CH4) is one of important greenhouse gases with chemical activity. The determination of isotopic compositions for CH4 emitted from the soils helps us to understand its production mechanisms. CH4 isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of CH4 have been reported from Antarctic tundra soils. In this paper, ornithogenic soil profiles were collected from four penguin colonies, and potential CH4 production rates and its 13C ratio (δ13C) were investigated based upon laboratory incubation experiments. The mean CH4 production rates are highly variable in these soil profiles, ranging from 0.7 to 20.3 μg CH4−C kg−1∙h−1. These ornithogenic soils had high potential production rates of CH4 under ambient air incubation or under N2 incubation, indicating the importance of potential CH4 emissions from penguin colonies. Most of the soil samples had higher δ13C-CH4 under N2 incubation (−39.28%~−43.53%) than under the ambient air incubation (−42.81%~−57.19%). Highly anaerobic conditions were conducive to the production of CH4 enriched in 13C, and acetic acid reduction under N2 incubation might be a predominant source for soil CH4 production. Overall the δ13C-CH4 showed a significant negative correlation with CH4 production rates in ornithogenic tundra soils under N2 incubation (R2=0.41, p<0.01) or under the ambient air incubation (R2=0.50, p<0.01). Potential CH4 production from ornithogenic soils showed a significant positive correlation with total phosphorus (TP) and NH4+−N contents, pH and soil moisture (Mc), but the δ13C-CH4 showed a significant negative correlation with TP and NH4+−N contents, pH and Mc, indicating that the deposition amount of penguin guano increased potential CH4 production rates from tundra soils, but decreased the δ13C-CH4. The CH4 emissions from the ornithogenic soils affect carbon isotopic compositions of atmospheric CH4 in coastal Antarctica

    Distribution patterns of typical enzyme activities in tundra soils on the Fildes Peninsula of maritime Antarctica

    Get PDF
    Soil enzyme activities can be used as indicators of microbial activity and soil fertility. In this paper, the activities of invertase (IA), phosphatase (PA) and urease (UA) were investigated in tundra soils collected from marine animal colonies, areas of human activity and background areas on Fildes Peninsula, maritime Antarctica. Soil enzyme activities were in the range of 1.0 82.7 mg·kg-1·h-1 for IA, 0.2–8.2 mg·kg-1·h-1 for PA and 0.2–39.8 mg·kg-1·h-1 for UA. The spatial distribution patterns for soil enzyme activities corresponded strongly with marine animal activity and human activity. Significantly higher soil IA and PA activities occurred in penguin colony soils, whereas seal colony soils showed higher UA activity. Statistical analysis indicated that soil IA activity was controlled by the levels of soil nutrients (TOC, TN and TP), PA activity was closely related with TP, and UA activity was affected by the soil pH. Overall, the deposition amount of penguin guano or seal excreta could impact the distribution of enzyme activity in Antarctic tundra soils. Multiple stepwise regression models were established between the enzyme activities, soil physicochemical properties and heavy metals Cu and Zn ([IA]=0.7[TP] 0.2[Cu]+22.3[TN]+15.1, [PA]=0.3[TP]+0.03[Mc]+0.2, [UA]=16.7[pH]–0.5[Cu]+ 0.4[Zn]–72.6). These models could be used to predict enzyme activities in the tundra soils, which could be helpful to study the effects of marine animal activity and environmental change on tundra ecosystems in maritime Antarctica

    Effects of sunlight on tundra nitrous oxide and methane fluxes in maritime Antarctica

    Get PDF
    The relationships of nitrous oxide (N2O) and methane (CH4) emissions to other environmental parameters have been studied extensively in Antarctic terrestrial ecosystems. However, the effects of sunlight on soil N2O and CH4 fluxes are neglected across the Antarctic tundra. Here, fluxes of N2O and CH4 from maritime Antarctic tundra soils were measured in the absence and presence of sunlight during three summers. The N2O fluxes averaged −4.6±1.2 μg·m−2·h−1 in the absence of sunlight and 5.7±1.5 μg·m−2·h−1 in its presence; CH4 fluxes averaged 119.8±24.5 μg·m−2·h−1 (absence) and −40.5±28.3 μg·m−2·h−1 (presence). The correlations between N2O and CH4 fluxes and other environmental variables (e.g., soil moisture, temperature, organic and inorganic material) were not statistically significant (P>0.05) at all sites. On average, sunlight significantly increased N2O emissions and CH4 uptake by 10.3 μg·m−2·h−1 and 160.3 μg·m−2·h−1, respectively. This study indicates that sunlight is critical for accurately estimating N2O and CH4 budgets from maritime Antarctica and necessary for constraining the role of their emissions from tundra soil

    Temporal and spatial variations of atmospheric methane concentration and δ13 C-CH4 near the surface on the Millor Peninsula, East Antarctica

    Get PDF
    During the 22nd Chinese Antarctic Research Expedition (CHINARE222, 2005/06) , the atmospheric gas samples near the surface were taken on the Millor Peninsula and adjacent areas, east Antarctica, using Tedlar gas bags. The methane(CH4) concentration and δ13 C-CH4 in those samples were analyzed in the laboratory. The average value of atmospheric CH4 concentration on this peninsula was (1.87 ± 0.12) × 10(-6) , slightly higher than the global average CH4 concentration. The summertime variation of CH4 concentrations showed a large fluctuation, corresponding to the variation of air temperatures. The average δ13 C-CH4 was ( -38.26 ± 0.52) ‰. CH4 concentrations and δ13 C-CH4 at different sites varied from 1.74 × 10(-6) to 2.56 ×10(-6) and from -39.31‰ to - 31.25‰, respectively. The factors affecting CH4 concentrations and δ13 C-CH4 values have also been discussed in this study

    Summertime CO2 fluxes from tundra of Ny-Ã…lesund in the High Arctic

    Get PDF
    The Arctic ecosystem, especially High Arctic tundra, plays a unique role in the global carbon cycle because of amplified warming in the region. However, relatively little research has been conducted in High Arctic tundra compared with other global ecosystems. In the present work, summertime net ecosystem exchange (NEE), ecosystem respiration (ER), and photosynthesis were investigated at six tundra sites (DM1–DM6) on Ny-Ålesund in the High Arctic. NEE at the tundra sites varied between a weak sink and strong source (−3.3 to 19.0 mg CO2·m−2·h−1). ER and gross photosynthesis were 42.8 to 92.9 mg CO2·m−2·h−1 and 54.7 to 108.7 mg CO2·m−2·h−1, respectively. The NEE variations showed a significant correlation with photosynthesis rates, whereas no significant correlation was found with ecosystem respiration, indicating that NEE variations across the region were controlled by differences in net uptake of CO2 owing to photosynthesis, rather than by variations in ER. A Q10 value of 1.80 indicated weak temperature sensitivity of tundra ER and its response to future global warming. NEE and gross photosynthesis also showed relatively strong correlations with C/N ratio. The tundra ER, NEE, and gross photosynthesis showed variations over slightly waterlogged wetland tundra, mesic and dry tundra. Overall, soil temperature, nutrients and moisture can be key effects on CO2 fluxes, ecosystem respiration, and NEE in the High Arctic

    A Local Leaky-Box Model for the Local Stellar Surface Density-Gas Surface Density-Gas Phase Metallicity Relation

    Get PDF
    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass–gas metallicity relation

    A Local Leaky-Box Model for the Local Stellar Surface Density-Gas Surface Density-Gas Phase Metallicity Relation

    Get PDF
    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass–gas metallicity relation

    Alkaline phosphatase activity in ornithogenic soils in polar tundra

    Get PDF
    Phosphatase plays an important role in the microbial liberation of phosphorus in soil systems. In this study, alkaline phosphatase activity (APA) was investigated from tundra ornithogenic soil profiles in Antarctica and Arctic. The organic carbon (TOC), total nitrogen (TN), and phosphorus fractions and pH were also analyzed in these soils. The correlation between APA and soil chemical properties is discussed. In almost all the soil profiles, APA showed the same variation patterns. The maximum APA appeared in the surface layers, and decreased with soil depth. The APA ranged from 1.00 ppm to 1 403.5 ppm with an average of approximately 408.3 ppm. The APA showed a significant positive correlation with TOC (r =0.70, p <0.001), TN (r =0.43, p =0.002), total phosphorus (r =0.39, p <0.05)and inorganic phosphorus (r =0.40, p =0.037), indicating that they were predominant factors affecting APA in the polar tundra soils. In addition, APA showed a significant negative correlation with Cu and Zn concentrations in the soils, indicating that Cu and Zn may inhibit APA. Our results showed that APA could be used as an important indicator for soil fertility in polar tundra ecosystems
    • …
    corecore