366 research outputs found

    A flexible method to evolve collisional systems and their tidal debris in external potentials

    Full text link
    We introduce a numerical method to integrate tidal effects on collisional systems, using any definition of the external potential as a function of space and time. Rather than using a linearisation of the tidal field, this new method follows a differential technique to numerically evaluate the tidal acceleration and its time derivative. Theses are then used to integrate the motions of the components of the collisional systems, like stars in star clusters, using a predictor-corrector scheme. The versatility of this approach allows the study of star clusters, including their tidal tails, in complex, multi-components, time-evolving external potentials. The method is implemented in the code nbody6 (Aarseth 2003).Comment: MNRAS accepted. Code available here: http://personal.ph.surrey.ac.uk/~fr0005/nbody6tt.ph

    The origin of the Milky Way globular clusters

    Get PDF
    We present a cosmological zoom-in simulation of a Milky Way-like galaxy used to explore the formation and evolution of star clusters. We investigate in particular the origin of the bimodality observed in the colour and metallicity of globular clusters, and the environmental evolution through cosmic times in the form of tidal tensors. Our results self-consistently confirm previous findings that the blue, metal-poor clusters form in satellite galaxies which are accreted onto the Milky Way, while the red, metal-rich clusters form mostly in situ or, to a lower extent in massive, self-enriched galaxies merging with the Milky Way. By monitoring the tidal fields these populations experience, we find that clusters formed in situ (generally centrally concentrated) feel significantly stronger tides than the accreted ones, both in the present-day, and when averaged over their entire life. Furthermore, we note that the tidal field experienced by Milky Way clusters is significantly weaker in the past than at present-day, confirming that it is unlikely that a power-law cluster initial mass function like that of young massive clusters, is transformed into the observed peaked distribution in the Milky Way with relaxation-driven evaporation in a tidal field.Comment: MNRAS accepte
    • …
    corecore