4 research outputs found

    The anti-photoaging effect of C-phycocyanin on ultraviolet B-irradiated BALB/c-nu mouse skin

    Get PDF
    Introduction: C-phycocyanin (C-PC), a photosynthetic protein obtained from Spirulina, is regarded a highly promising commercially available biochemical. Numerous in vitro and in vivo studies have provided evidence of C-PC’s ability to mitigate the inflammatory response, alleviate oxidative stress, and facilitate wound healing. However, despite the existing knowledge regarding C-PC’s protective mechanism against cellular apoptosis induced by ultraviolet B (UVB) radiation, further in vivo experiments are needed to explore its anti-photoaging mechanism.Methods: In this study, a UVB-induced skin photoaging model was established using BALB/c-nu mice, and the potential protective effects of topically administered c-PC were investigated by various molecular biology tools. In addition, a novel delivery system, C-PC nanodispersion, was developed to facilitate the transdermal delivery of C-PC.Results: C- PC demonstrated significant anti-photoaging activities in the UVB-induced skin. The application of C-PC to the dorsal skin of the mice resulted in improved macroscopic characteristics, such as reduced sagging and coarse wrinkling, under UVB irradiation Histological analyses showed that C-PC treatment significantly decreased the symptoms of epidermal thickening, prevented dermal collagen fiber loosening, increased the hydroxyproline (Hyp) content and activities of antioxidant enzymes (such as superoxide dismutase, catalase, and glutathione peroxidase) in mouse skin, decreased malondialdehyde levels and expressions of inflammatory factors (interleukin-1α [IL-1α], IL-1β, IL-6, and tumor necrosis factor-α), reduced matrix metalloproteinase [MMP-3 and MMP-9] expressions, and inhibited the phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38 proteins in the mitogen-activated protein kinase family.Discussion: By analyzing the results of the study, a new drug delivery system, C-PC nano-dispersion, was proposed, and the anti-photoaging effect of C-PC and its mechanism were investigated

    Identification of Antioxidative Peptides Derived from Arthrospira maxima in the Biorefinery Process after Extraction of C-Phycocyanin and Lipids

    No full text
    Arthrospira maxima has been identified as a sustainable source of rich proteins with diverse functionalities and bioactivities. After extracting C-phycocyanin (C-PC) and lipids in a biorefinery process, the spent biomass still contains a large proportion of proteins with potential for biopeptide production. In this study, the residue was digested using Papain, Alcalase, Trypsin, Protamex 1.6, and Alcalase 2.4 L at different time intervals. The resulting hydrolyzed product with the highest antioxidative activity, evaluated through their scavenging capability of hydroxyl radicals, superoxide anion, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), was selected for further fractionation and purification to isolate and identify biopeptides. Alcalase 2.4 L was found to produce the highest antioxidative hydrolysate product after four-hour hydrolysis. Fractionating this bioactive product using ultrafiltration obtained two fractions with different molecular weights (MW) and antioxidative activity. The low-molecular-weight fraction (LMWF) with MW <3 kDa had higher DPPH scavenging activity with the IC50 value of 2.97 ± 0.33 compared to 3.76 ± 0.15 mg/mL of the high-molecular-weight fraction (HMWF) with MW >3 kDa. Two stronger antioxidative fractions (F-A and F-B) with the respective significant lower IC50 values of 0.83 ± 0.22 and 1.52 ± 0.29 mg/mL were isolated from the LMWF using gel filtration with a Sephadex G-25 column. Based on LC-MS/MS analysis of the F-A, 230 peptides derived from 108 A. maxima proteins were determined. Notably, different antioxidative peptides possessing various bioactivities, including antioxidation, were detected with high predicted scores together with in silico analyses on their stability and toxicity. This study established knowledge and technology to further value-add to the spent A. maxima biomass by optimizing hydrolysis and fraction processes to produce antioxidative peptides with Alcalase 2.4 L after two products already produced in a biorefinery. These bioactive peptides have potential applications in food and nutraceutical products
    corecore