3 research outputs found

    Analysis of gene co-expression networks of phosphate starvation and aluminium toxicity responses in Populus spp.

    No full text
    The adaptation of crops to acid soils is needed for the maintenance of food security in a sustainable way, as decreasing fertilizers use and mechanical interventions in the soil would favor the reduction of agricultural practices' environmental impact. Phosphate deficiency and the presence of reactive aluminum affect vital processes to the plant in this soil, mostly water and nutrient absorption. From this, the understanding of the molecular response to these stresses can foster strategies for genetic improvement, so the aim was to broadly analyze the transcriptional variations in Poupulus spp. in response to these abiotic stresses, as a plant model for woody crops. A co-expression network was constructed among 3,180 genes differentially expressed in aluminum-stressed plants with 34,988 connections. Of this total, 344 genes presented two-fold transcriptional variation and the group of genes associated with those regulated after 246 hours of stress had higher number of connections per gene, with some already characterized genes related to this stress as main hubs. Another co-expression network was made up of 8,380 connections between 550 genes regulated by aluminum stress and phosphate deficiency, in which 380 genes had similar profile in both stresses and only eight with transcriptional variation higher than 20%. All the transcriptomic data are presented here with functional enrichment and homology comparisons with already characterized genes in another species that are related to the explored stresses, in order to provide a broad analysis of the co-opted responses for both the stresses as well as some specificity. This approach improves our understanding regarding the plants adaptation to acid soils and may contribute to strategies of crop genetic improvement for this condition that is widely present in regions of high agricultural activity

    Maize heat shock proteins—prospection, validation, categorization and in silico analysis of the different ZmHSP families

    No full text
    Abstract Among the plant molecular mechanisms capable of effectively mitigating the effects of adverse weather conditions, the heat shock proteins (HSPs), a group of chaperones with multiple functions, stand out. At a time of full progress on the omic sciences, they look very promising in the genetic engineering field, especially in order to conceive superior genotypes, potentially tolerant to abiotic stresses (AbSts). Recently, some works concerning certain families of maize HSPs (ZmHSPs) were published. However, there was still a lack of a study that, with a high degree of criteria, would fully conglomerate them. Using distinct but complementary strategies, we have prospected as many ZmHSPs candidates as possible, gathering more than a thousand accessions. After detailed data mining, we accounted for 182 validated ones, belonging to seven families, which were subcategorized into classes with potential for functional parity. In them, we identified dozens of motifs with some degree of similarity with proteins from different kingdoms, which may help explain some of their still poorly understood means of action. Through in silico and in vitro approaches, we compared their expression levels after controlled exposure to several AbSts' sources, applied at diverse tissues, on varied phenological stages. Based on gene ontology concepts, we still analyzed them from different perspectives of term enrichment. We have also searched, in model plants and close species, for potentially orthologous genes. With all these new insights, which culminated in a plentiful supplementary material, rich in tables, we aim to constitute a fertile consultation source for those maize researchers attracted by these interesting stress proteins
    corecore