27 research outputs found

    Entropy stable DGSEM for nonlinear hyperbolic systems in nonconservative form with application to two-phase flows

    Full text link
    In this work, we consider the discretization of nonlinear hyperbolic systems in nonconservative form with the high-order discontinuous Galerkin spectral element method (DGSEM) based on collocation of quadrature and interpolation points (Kopriva and Gassner, J. Sci. Comput., 44 (2010), pp.136--155; Carpenter et al., SIAM J. Sci. Comput., 36 (2014), pp.~B835-B867). We present a general framework for the design of such schemes that satisfy a semi-discrete entropy inequality for a given convex entropy function at any approximation order. The framework is closely related to the one introduced for conservation laws by Chen and Shu (J. Comput. Phys., 345 (2017), pp.~427--461) and relies on the modification of the integral over discretization elements where we replace the physical fluxes by entropy conservative numerical fluxes from Castro et al. (SIAM J. Numer. Anal., 51 (2013), pp.~1371--1391), while entropy stable numerical fluxes are used at element interfaces. Time discretization is performed with strong-stability preserving Runge-Kutta schemes. We use this framework for the discretization of two systems in one space-dimension: a 2×22\times2 system with a nonconservative product associated to a linearly-degenerate field for which the DGSEM fails to capture the physically relevant solution, and the isentropic Baer-Nunziato model. For the latter, we derive conditions on the numerical parameters of the discrete scheme to further keep positivity of the partial densities and a maximum principle on the void fractions. Numerical experiments support the conclusions of the present analysis and highlight stability and robustness of the present schemes

    A robust high-order Lagrange-projection like scheme with large time steps for the isentropic Euler equations

    Get PDF
    International audienceWe present an extension to high-order of a first-order Lagrange-projection like method for the approximation of the Euler equations introduced in Coquel et al. (Math. Comput., 79 (2010), pp. 1493–1533). The method is based on a decomposition between acoustic and transport operators associated to an implicit-explicit time integration, thus relaxing the constraint of acoustic waves on the time step. We propose here to use a discontinuous Galerkin method for the space approximation. Considering the isentropic Euler equations, we derive conditions to keep positivity of the mean value of density and to satisfy a discrete entropy inequality in each element of the mesh at any approximation order in space. These results allow to design limiting procedures to restore these properties at nodal values within elements. Numerical experiments support the conclusions of the analysis and highlight stability and robustness of the present method, while it allows the use of large time steps

    Maximum principle preserving time implicit DGSEM for linear scalar hyperbolic conservation laws

    Full text link
    We investigate the properties of the high-order discontinuous Galerkin spectral element method (DGSEM) with implicit backward-Euler time stepping for the approximation of hyperbolic linear scalar conservation equation in multiple space dimensions. We first prove that the DGSEM scheme in one space dimension preserves a maximum principle for the cell-averaged solution when the time step is large enough. This property however no longer holds in multiple space dimensions and we propose to use the flux-corrected transport limiting [Boris and Book, J. Comput. Phys., 11 (1973)] based on a low-order approximation using graph viscosity to impose a maximum principle on the cell-averaged solution. These results allow to use a linear scaling limiter [Zhang and Shu, J. Comput. Phys., 229 (2010)] in order to impose a maximum principle at nodal values within elements. Then, we investigate the inversion of the linear systems resulting from the time implicit discretization at each time step. We prove that the diagonal blocks are invertible and provide efficient algorithms for their inversion. Numerical experiments in one and two space dimensions are presented to illustrate the conclusions of the present analyses.Comment: 34 page

    Choice of measure source terms in interface coupling for a model problem in gas dynamics.

    Get PDF
    International audienceThis paper is devoted to the mathematical and numerical analysis of a coupling procedure for one-dimensional Euler systems. The two systems have different closure laws and are coupled through a thin fixed interface. Following the work of [5], we propose to couple these systems by a bounded vector-valued Dirac measure, concentrated at the coupling interface, which in the applications may have a physical meaning. We show that the proposed framework allows to control the coupling conditions and we propose an approximate Riemann solver based on a relaxation approach preserving equilibrium solutions of the coupled problem. Numerical experiments in constrained optimization problems are then presented to assess the performances of the present method. 1. Introduction The study of large-scale and complex problems exhibiting a wide range of physical space and time scales (see for instance [62, 35, 14]), usually requires separate solvers adapted to the resolution of specific scales. This is the case of many industrial flows. Let us quote, for example, the numerical simulation of two-phase flows applied to the burning liquid oxygen-hydrogen gas in rocket engines [58]. This kind of flow contains both separated and dispersed two-phase flows, due to atomization and evaporation phenomena. This requires appropriate models and solvers for separated and dispersed phases that have to be appropriately coupled. Another example concerns turbomachine flows which can be modeled by the Euler equations of gas dynamics with different closure laws between the stages of the turbine, where the conditions of temperature and pressure are strongly heterogeneous. The coupling of these different systems is thus necessary to give a complete description of the flow inside the whole turbine. The method of interface coupling allows to represent the evolution of such flows, where different models are separated by fixed interfaces. First, coupling conditions are specified at the interface to exchange information between the systems. The definition of transmission conditions generally results from physical consideration, e.g. the conservation or the continuity of given variables. Then, the transmission conditions are represented at the discrete level. The study of interface coupling for nonlinear hyperbolic systems has received attention for several years. In [43], the authors study the scalar case from both mathematical and numerical points of view

    A robust high-order discontinuous Galerkin method with large time steps for the compressible Euler equations

    No full text
    International audienceWe present a high-order Lagrange-projection like method for the approximation of the compressible Euler equations with a general equation of state. We extend the method introduced in Renac [F. Renac, Numer. Math., 2016, DOI 10.1007/s00211-016-0807-0] in the case of the isentropic gas dynamics to the compressible Euler equations and minimize the numerical dissipation by quantifying it from a parameter evaluated locally in each element of the mesh. The method is based on a decomposition between acoustic and transport operators associated to an implicit-explicit time integration, thus relaxing the constraint of acoustic waves on the time step as proposed in Coquel et al. [F. Coquel, Q. Long-Nguyen, M. Postel and Q.H. Tran, Math. Comput., 79:1493–1533, 2010] in the context of a first-order finite volume method. We derive conditions on the time step and on a local numerical dissipation parameter to keep positivity of the mean value of the discrete density and internal energy in each element of the mesh and to satisfy a discrete inequality for the physical entropy at any approximation order in space. These results are then used to design limiting procedures in order to restore these properties at nodal values within elements. Moreover, the scheme is designed to avoid over-resolution in space and time in the low Mach number regime. Numerical experiments support the conclusions of the analysis and highlight stability and robustness of the present method when applied to either discontinuous flows or vacuum. Large time steps are allowed while keeping accuracy on smooth solutions even for low Mach number flows
    corecore