82 research outputs found

    Exploring multipartite quantum correlations with the square of quantum discord

    Get PDF
    We explore the quantum correlation distribution in multipartite quantum states based on the square of quantum discord (SQD). For tripartite quantum systems, we derive the necessary and sufficient condition for the SQD to satisfy the monogamy relation. Particularly, we prove that the SQD is monogamous for three-qubit pure states, based on which a genuine tripartite quantum correlation measure is introduced. In addition, we also address the quantum correlation distributions in four-qubit pure states. As an example, we investigate multipartite quantum correlations in the dynamical evolution of multipartite cavity-reservoir systems.Comment: 8 pages, 5 figure

    Significance of somatic mutations and content alteration of mitochondrial DNA in esophageal cancer

    Get PDF
    BACKGROUND: The roles of mitochondria in energy metabolism, the generation of ROS, aging, and the initiation of apoptosis have implicated their importance in tumorigenesis. In this study we aim to establish the mutation spectrum and to understand the role of somatic mtDNA mutations in esophageal cancer. METHODS: The entire mitochondrial genome was screened for somatic mutations in 20 pairs (18 esophageal squamous cell carcinomas, one adenosquamous carcinoma and one adenocarcinoma) of tumor/surrounding normal tissue of esophageal cancers, using temporal temperature gradient gel electrophoresis (TTGE), followed by direct DNA sequencing to identify the mutations. RESULTS: Fourteen somatic mtDNA mutations were identified in 55% (11/20) of tumors analyzed, including 2 novel missense mutations and a frameshift mutation in ND4L, ATP6 subunit, and ND4 genes respectively. Nine mutations (64%) were in the D-loop region. Numerous germline variations were found, at least 10 of them were novel and five were missense mutations, some of them occurred in evolutionarily conserved domains. Using real-time quantitative PCR analysis, the mtDNA content was found to increase in some tumors and decrease in others. Analysis of molecular and other clinicopathological findings does not reveal significant correlation between somatic mtDNA mutations and mtDNA content, or between mtDNA content and metastatic status. CONCLUSION: Our results demonstrate that somatic mtDNA mutations in esophageal cancers are frequent. Some missense and frameshift mutations may play an important role in the tumorigenesis of esophageal carcinoma. More extensive biochemical and molecular studies will be necessary to determine the pathological significance of these somatic mutations

    Study of the doubly Cabibbo-suppressed decays Ds+K+K+πD^+_s\to K^+K^+\pi^- and Ds+K+K+ππ0D^+_s\to K^+K^+\pi^-\pi^0

    Full text link
    Based on 7.33 fb1^{-1} of e+ee^+e^- collision data collected at center-of-mass energies between 4.128 and 4.226 GeV with the BESIII detector, the experimental studies of the doubly Cabibbo-suppressed decays Ds+K+K+πD^+_s\to K^+K^+\pi^- and Ds+K+K+ππ0D^+_s\to K^+K^+\pi^-\pi^0 are reported. We determine the absolute branching fraction of Ds+K+K+πD^+_s\to K^+K^+\pi^- to be (1.230.25+0.28(stat)±0.06(syst){1.23^{+0.28}_{-0.25}}({\rm stat})\pm0.06({\rm syst})) ×104\times 10^{-4}. No significant signal of Ds+K+K+ππ0D^+_s\to K^+K^+\pi^-\pi^0 is observed and the upper limit on its decay branching fraction at 90\% confidence level is set to be 1.7×1041.7\times10^{-4}.Comment: 10 pages, 4 figures, 4 table

    Observation of the Singly Cabibbo-Suppressed Decay Λc+ΣK+π+\Lambda_{c}^{+}\to \Sigma^{-}K^{+}\pi^{+}

    Full text link
    The singly Cabibbo-suppressed decay Λc+ΣK+π+\Lambda_{c}^{+}\to \Sigma^{-}K^{+}\pi^{+} is observed for the first time with a statistical significance of 6.4σ6.4\sigma by using 4.5 fb1^{-1} of e+ee^+e^- collision data collected at center-of-mass energies between 4.600 and 4.699 GeV with the BESIII detector at BEPCII. The absolute branching fraction of Λc+ΣK+π+\Lambda_{c}^{+}\to \Sigma^{-}K^{+}\pi^{+} is measured to be (3.8±1.3stat±0.2syst)×104(3.8\pm1.3_{\rm stat}\pm0.2_{\rm syst})\times 10^{-4} in a model-independent approach. This is the first observation of a Cabibbo-suppressed Λc+\Lambda_{c}^{+} decay involving Σ\Sigma^- in the final state. The ratio of branching fractions between Λc+ΣK+π+\Lambda_{c}^{+}\to \Sigma^{-}K^{+}\pi^{+} and the Cabibbo-favored decay Λc+Σπ+π+\Lambda_{c}^{+}\to \Sigma^- \pi^+\pi^+ is calculated to be (0.4±0.1)sc2(0.4 \pm 0.1)s_{c}^{2}, where scsinθc=0.2248s_{c} \equiv \sin\theta_c = 0.2248 with θc\theta_c the Cabibbo mixing angle. This ratio significantly deviates from 1.0sc21.0s_{c}^{2} and provides important information for the understanding of nonfactorization contributions in Λc+\Lambda_{c}^{+} decays.Comment: 8 pages, 2 figure
    corecore