15,482 research outputs found

    Electronic states and pairing symmetry in the two-dimensional 16 band d-p model for iron-based superconductor

    Full text link
    The electronic states of the FeAs plane in iron-based superconductors are investigated on the basis of the two-dimensional 16-band d-p model, where the tight-binding parameters are determined so as to fit the band structure obtained by the density functional calculation for LaFeAsO. The model includes the Coulomb interaction on a Fe site: the intra- and inter-orbital direct terms U and U', the exchange coupling J and the pair-transfer J'. Within the random phase approximation (RPA), we discuss the pairing symmetry of possible superconducting states including s-wave and d-wave pairing on the U'-J plane.Comment: 2 pages, 4 figures; Proceedings of the Int. Symposium on Fe-Oxipnictide Superconductors (Tokyo, 28-29th June 2008

    Electronic Structure of ZnCNi3

    Full text link
    According to a recent report by Park et al, ZnCNi3 is isostructural and isovalent to the superconducting (Tc = 8 K) anti-perovskite, MgCNi3, but shows no indication of a superconducting transition down to 2K. A comparison of calculated electronic structures shows that the main features of MgCNi3, particularly the van Hove singularity near the Fermi energy, are preserved in ZnCNi3. Thus the reported lack of superconductivity in ZnCNi3 is not explainable in terms of Tc being driven to a very low value by a small Fermi level density of states. We propose that the lack of superconductivity, the small value of the linear specific heat coefficient, gamma, and the discrepancy between theoretical and experimental lattice constants can all be explained if the material is assumed to be a C-deficient alpha-ZnCNi3 similar to the analogous non-superconducting phase of MgCNi3
    corecore