17,717 research outputs found

    Surface phase separation in nanosized charge-ordered manganites

    Full text link
    Recent experiments showed that the robust charge-ordering in manganites can be weakened by reducing the grain size down to nanoscale. Weak ferromagnetism was evidenced in both nanoparticles and nanowires of charge-ordered manganites. To explain these observations, a phenomenological model based on surface phase separation is proposed. The relaxation of superexchange interaction on the surface layer allows formation of a ferromagnetic shell, whose thickness increases with decreasing grain size. Possible exchange bias and softening of the ferromagnetic transition in nanosized charge-ordered manganites are predicted.Comment: 4 pages, 3 figure

    Possibility of Unconventional Pairing Due to Coulomb Interaction in Fe-Based Pnictide Superconductors: Perturbative Analysis of Multi-Band Hubbard Models

    Full text link
    Possibility of unconventional pairing due to Coulomb interaction in iron-pnictide superconductors is studied by applying a perturbative approach to realistic 2- and 5-band Hubbard models. The linearized Eliashberg equation is solved by expanding the effective pairing interaction perturbatively up to third order in the on-site Coulomb integrals. The numerical results for the 5-band model suggest that the eigenvalues of the Eliashberg equation are sufficiently large to explain the actual high Tc for realistic values of Coulomb interaction and the most probable pairing state is spin-singlet s-wave without any nodes just on the Fermi surfaces, although the superconducting order parameter changes its sign between the small Fermi pockets. On the other hand the 2-band model is quite insufficient to explain the actual high Tc.Comment: 2 pages, 3 figures. Proceedings of the Intl. Symposium on Fe-Oxypnictide Superconductors (Tokyo, 28-29th June 2008

    Thorium-doping induced superconductivity up to 56 K in Gd1-xThxFeAsO

    Get PDF
    Following the discovery of superconductivity in an iron-based arsenide LaO1-xFxFeAs with a superconducting transition temperature (Tc) of 26 K[1], Tc was pushed up surprisingly to above 40 K by either applying pressure[2] or replacing La with Sm[3], Ce[4], Nd[5] and Pr[6]. The maximum Tc has climbed to 55 K, observed in SmO1-xFxFeAs[7, 8] and SmFeAsO1-x[9]. The value of Tc was found to increase with decreasing lattice parameters in LnFeAsO1-xFx (Ln stands for the lanthanide elements) at an apparently optimal doping level. However, the F- doping in GdFeAsO is particularly difficult[10,11] due to the lattice mismatch between the Gd2O2 layers and Fe2As2 layers. Here we report observation of superconductivity with Tc as high as 56 K by the Th4+ substitution for Gd3+ in GdFeAsO. The incorporation of relatively large Th4+ ions relaxes the lattice mismatch, hence induces the high temperature superconductivity.Comment: 4 pages, 3 figure

    Improved superlensing in two-dimensional photonic crystals with a basis

    Full text link
    We study propagation of light in square and hexagonal two-dimensional photonic crystals. We show, that slabs of these crystals focus light with subwavelength resolution. We propose a systematic way to increase this resolution, at an essentially fixed frequency, by employing a hierarchy of crystals of the same structure, and the same lattice constant, but with an increasingly complex basis.Comment: 16 Pages, 5 Figure

    Torsional-flexural buckling of unevenly battened columns under eccentrical compressive loading

    Get PDF
    In this paper, an analytical model is developed to determine the torsional-flexural buckling load of a channel column braced by unevenly distributed batten plates. Solutions of the critical-buckling loads were derived for three boundary cases using the energy method in which the rotating angle between the adjacent battens was presented in the form of a piecewise cubic Hermite interpolation (PCHI) for unequally spaced battens. The validity of the PCHI method was numerically verified by the classic analytical approach for evenly battened columns and a finite-element analysis for unevenly battened ones, respectively. Parameter studies were then performed to examine the effects of loading eccentricities on the torsional-flexural buckling capacity of both evenly and unevenly battened columns. Design parameters taken into account were the ratios of pure torsional buckling load to pure flexural–buckling load, the number and position of battens, and the ratio of the relative extent of the eccentricity. Numerical results were summarized into a series of relative curves indicating the combination of the buckling load and corresponding moments for various buckling ratios.National Natural Science Foundation of China (NSFC) under grant number (No.) 51175442 and Sichuan International Cooperation Research Project under grant No. 2014HH002
    • …
    corecore