104 research outputs found

    Structural properties, defects and structural phase transition in the ROFeM (R=La, Nd; M=As, P) materials

    Full text link
    The structural properties of the ROFeM (R=La, Nd; M=As, P) materials have been analyzed by means of electron diffraction, high-resolution transmission-electron microscopy (TEM) and in-situ cooling TEM observations. The experimental results demonstrate that the layered ROFeM crystals often contain a variety of structural defects, such as stacking faults and small-angle boundaries. The in-situ TEM investigations reveal that, in association with the remarkable spin-density-wave (SDW) instability near 150 K, complex structural transitions can be clearly observed in both crystal symmetry and local microstructure features.Comment: 17 pages, 6 figure

    Superconductivity at 53.5 K in GdFeAsO1-delta

    Full text link
    Here we report the fabrication and superconductivity of the iron-based arsenic-oxide GdFeAsO1-delta compound with oxygen-deficiency, which has an onset resistivity transition temperature at 53.5 K. This material has a same crystal structure as the newly discovered high-Tc ReFeAsO1-delta family (Re = rare earth metal) and a further reduced crystal lattice, while the Tc starts to decrease compared with the SmFeAsO1-delta system

    Structural and critical current properties in polycrystalline SmO1-xFxFeAs

    Full text link
    A series of polycrystalline SmO1-xFxFeAs bulks (x=0.15, 0.2, 0.3 and 0.4) were prepared by the conventional solid state reaction. Resistivity, susceptibility, magnetic hysteresis, critical current density and microstructure of these samples have been investigated. It is found that critical transition temperature Tc increases steadily with increasing fluorine content, with the highest onset Tc=53 K at x=0.4. On the other hand, the superconductivity seems correlated with lattice constants; that is, Tc rises with the shrinkage of a-axis while resistivity increases with the enlargement of c-axis. A global critical current density of 1.1x10^4 A/cm^2 at 5 K in self field was achieved in the purest sample. A method of characterization of inter-grain current density is proposed. This method gives an inter-grain Jc of 3.6x10^3 A/cm^2 at 5 K in self field, in contrast to the intra-grain Jc of 10^6 A/cm^2. The effect of composition gradients on the inter-grain Jc in SmO1-xFxFeAs is also discussed.Comment: 18 pages, 7 figure

    Crystal chemical simulation of superconductors on the basis of oxide and intermetallic layers

    Full text link
    Simulation of 'hybrid' superconductors of 3d-, 4d- and 5d-transition elements consisting of two different superconducting fragments located between positively charged ions planes - B'O2 oxide planes and B2C2 intermetallic layers - has been performed on the basis of the structure of Sr2Mn3As2O2 (A2(B2C2)(B'O2)). The oxide planes are similar to those of CuO2 in high-temperature superconducting cuprates while the intermetallic layers - to those of Ni2B2 in low-temperature superconducting borocarbides RNi2B2C and Fe2As2 layers in high-temperature superconducting oxypnictides RFeAsO1-xFx.Comment: Title changed by the Editor of Supercond. Sci. Technol., published versio

    Evidence for two distinct scales of current flow in polycrystalline Sm and Nd iron oxypnictides

    Full text link
    Early studies have found quasi-reversible magnetization curves in polycrystalline bulk rare-earth iron oxypnictides that suggest either wide-spread obstacles to intergranular current or very weak vortex pinning. In the present study of polycrystalline samarium and neodymium rare-earth iron oxypnictide samples made by high pressure synthesis, the hysteretic magnetization is significantly enhanced. Magneto optical imaging and study of the field dependence of the remanent magnetization as a function of particle size both show that global currents over the whole sample do exist but that the intergranular and intragranular current densities have distinctively different temperature dependences and differ in magnitude by about 1000. Assuming that the highest current density loops are restricted to circulation only within grains leads to values of ~5 MA/cm2 at 5 K and self field, while whole-sample current densities, though two orders of magnitude lower are 1000-10000 A/cm2, some two orders of magnitude higher than in random polycrystalline cuprates. We cannot yet be certain whether this large difference in global and intragrain current density is intrinsic to the oxypnictides or due to extrinsic barriers to current flow, because the samples contain significant second phase, some of which wets the grain boundaries and produces evidences of SNS proximity effect in the whole sample critical current.Comment: 28 pages, 14 figure

    X-ray absorption spectroscopy (XAS) investigation of the electronic structure of superconducting FeSex single crystals

    Get PDF
    X-ray absorption spectroscopy (XAS) Fe K-edge spectra of the FeSex (x=1-0.8) single crystals cleaved in situ in vacuum reveal characteristic Fe 4sp states, a lattice distortion and the Se K-edge spectra point to a strong Fe 3d-Se 4p hybridization giving rise to itinerant charge carriers. A formal charge of ~1.8+ for Fe and ~2.2- for Se were evaluated from these spectra in the FeSex (x=0.88). The charge balance between Fe and Se is assigned itinerant electrons located in the Fe-Se hybridization bond. As x decreases the 4p hole count increases and a crystal structure distortion is observed that in turn causes the Fe separation in the ab plane change from 4p orbital to varying (modulating) coordination. Powder x-ray diffraction (XRD) measurements also show a slight increase in lattice parameters as x decreases (increasing Se deficiency)

    Superconducting properties of SmO1-xFxFeAs wires with Tc = 52 K prepared by the powder-in-tube method

    Full text link
    We demonstrate that Ta sheathed SmO1-xFxFeAs wires were successfully fabricated by the powder-in-tube (PIT) method for the first time. Structural analysis by mean of x-ray diffraction shows that the main phase of SmO1-xFxFeAs was obtained by this synthesis method. The transition temperature of the SmO0.65F0.35FeAs wires was confirmed to be as high as 52 K. Based on magnetization measurements, it is found that a globe current can flow on macroscopic sample dimensions with Jc of ~3.9x10^3 A/cm^2 at 5 K and self field, while a high Jc about 2x10^5 A/cm^2 is observed within the grains, suggesting that a significant improvement in the globle Jc is possible. It should be noted that the Jc exhibits a very weak field dependence behavior. Furthermore, the upper critical fields (Hc2) determined according to the Werthamer-Helfand-Hohenberg formula are (T= 0 K) = 120 T, indicating a very encouraging application of the new superconductors.Comment: 14 pages, 6 figure

    Point-Contact Spectroscopy of Iron-Based Layered Superconductor LaO0.9_{0.9}F0.1āˆ’Ī“_{0.1-\delta}FeAs

    Full text link
    We present point-contact spectroscopy data for junctions between a normal metal and the newly discovered F-doped superconductor LaO0.9_{0.9}F0.1āˆ’Ī“_{0.1-\delta}FeAs (F-LaOFeAs). A zero-bias conductance peak was observed and its shape and magnitude suggests the presence of Andreev bound states at the surface of F-LaOFeAs, which provides a possible evidence of an unconventional pairing symmetry with a nodal gap function. The maximum gap value Ī”0ā‰ˆ3.9Ā±0.7\Delta_0\approx3.9\pm0.7meV was determined from the measured spectra, in good agreement with the recent experiments on specific heat and lower critical field.Comment: 5 pages, 4 figure

    Superconductivity in Co-doped SmFeAsO

    Full text link
    Here we report the synthesis and basic characterization of SmFe1-xCoxAsO (x=0.10, 0.15). The parent compound SmFeAsO itself is not superconducting but shows an antiferromagnetic order near 150 K, which must be suppressed by doping before superconductivity emerges. With Co-doping in the FeAs planes, antiferromagnetic order is destroyed and superconductivity occurs at 15 K. Similar to LaFe1-xCoxAsO, the SmFe1-xCoxAsO system appears to tolerate considerable disorder in the FeAs planes. This result is important, which indicates difference between cuprare superconductors and the iron-based arsenide ones.Comment: 11 pages, 3 figure
    • ā€¦
    corecore