222 research outputs found

    Structural properties, defects and structural phase transition in the ROFeM (R=La, Nd; M=As, P) materials

    Full text link
    The structural properties of the ROFeM (R=La, Nd; M=As, P) materials have been analyzed by means of electron diffraction, high-resolution transmission-electron microscopy (TEM) and in-situ cooling TEM observations. The experimental results demonstrate that the layered ROFeM crystals often contain a variety of structural defects, such as stacking faults and small-angle boundaries. The in-situ TEM investigations reveal that, in association with the remarkable spin-density-wave (SDW) instability near 150 K, complex structural transitions can be clearly observed in both crystal symmetry and local microstructure features.Comment: 17 pages, 6 figure

    Superconductivity at 53.5 K in GdFeAsO1-delta

    Full text link
    Here we report the fabrication and superconductivity of the iron-based arsenic-oxide GdFeAsO1-delta compound with oxygen-deficiency, which has an onset resistivity transition temperature at 53.5 K. This material has a same crystal structure as the newly discovered high-Tc ReFeAsO1-delta family (Re = rare earth metal) and a further reduced crystal lattice, while the Tc starts to decrease compared with the SmFeAsO1-delta system

    57Fe Mossbauer spectroscopy and magnetic measurements of oxygen deficient LaFeAsO

    Full text link
    We report on the magnetic behavior of oxygen deficient LaFeAsO1-x (x-0.10) compound, prepared by one-step synthesis, which crystallizes in the tetragonal (S.G. P4/nmm) structure at room temperature. Resistivity measurements show a strong anomaly near 150 K, which is ascribed to the spin density wave (SDW) instability. On the other hand, dc magnetization data shows paramagnetic-like features down to 5 K, with an effective moment of 0.83 mB/Fe. 57Fe Mossbauer studies (MS) have been performed at 95 and 200 K. The spectra at both temperatures are composed of two sub-spectra. At 200 K the major one (88%), is almost a singlet, and corresponds to those Fe nuclei, which have two oxygen ions in their close vicinity. The minor one, with a large quadrupole splitting, corresponds to Fe nuclei, which have vacancies in their immediate neighborhood. The spectrum at 95 K, exhibits a broadened magnetic split major (84%) sub-spectrum and a very small magnetic splitting in the minor subspectrum. The relative intensities of the subspectra facilitate in estimating the actual amount of oxygen vacancies in the compound to be 7.0(5)%, instead of the nominal LaFeAsO0.90. These results, when compared with reported 57Fe MS of non-superconducting LaFeAsO and superconducting LaFeAsO0.9F0.1, confirm that the studied LaFeAsO0.93 is a superconductivity-magnetism crossover compound of the newly discovered Fe based superconducting family.Comment: 7 pages text + Figs : Comments/suggestions welcome ([email protected]

    The effect of internal pressure on the tetragonal to monoclinic structural phase transition in ReOFeAs: the case of NdOFeAs

    Full text link
    We report the temperature dependent x-ray powder diffraction of the quaternary compound NdOFeAs (also called NdFeAsO) in the range between 300 K and 95 K. We have detected the structural phase transition from the tetragonal phase, with P4/nmm space group, to the orthorhombic or monoclinic phase, with Cmma or P112/a1 (or P2/c) space group, over a broad temperature range from 150 K to 120 K, centered at T0 ~137 K. Therefore the temperature of this structural phase transition is strongly reduced, by about ~30K, by increasing the internal chemical pressure going from LaOFeAs to NdOFeAs. In contrast the superconducting critical temperature increases from 27 K to 51 K going from LaOFeAs to NdOFeAs doped samples. This result shows that the normal striped orthorhombic Cmma phase competes with the superconducting tetragonal phase. Therefore by controlling the internal chemical pressure in new materials it should be possible to push toward zero the critical temperature T0 of the structural phase transition, giving the striped phase, in order to get superconductors with higher Tc.Comment: 9 pages, 3 figure

    Structural and critical current properties in polycrystalline SmO1-xFxFeAs

    Full text link
    A series of polycrystalline SmO1-xFxFeAs bulks (x=0.15, 0.2, 0.3 and 0.4) were prepared by the conventional solid state reaction. Resistivity, susceptibility, magnetic hysteresis, critical current density and microstructure of these samples have been investigated. It is found that critical transition temperature Tc increases steadily with increasing fluorine content, with the highest onset Tc=53 K at x=0.4. On the other hand, the superconductivity seems correlated with lattice constants; that is, Tc rises with the shrinkage of a-axis while resistivity increases with the enlargement of c-axis. A global critical current density of 1.1x10^4 A/cm^2 at 5 K in self field was achieved in the purest sample. A method of characterization of inter-grain current density is proposed. This method gives an inter-grain Jc of 3.6x10^3 A/cm^2 at 5 K in self field, in contrast to the intra-grain Jc of 10^6 A/cm^2. The effect of composition gradients on the inter-grain Jc in SmO1-xFxFeAs is also discussed.Comment: 18 pages, 7 figure

    Nernst effect of the new iron-based superconductor LaO1x_{1-x}Fx_{x}FeAs

    Full text link
    We report the first Nernst effect measurement on the new iron-based superconductor LaO1x_{1-x}Fx_{x}FeAs (x=0.1)(x=0.1). In the normal state, the Nernst signal is negative and very small. Below TcT_{c} a large positive peak caused by vortex motion is observed. The flux flowing regime is quite large compared to conventional type-II superconductors. However, a clear deviation of the Nernst signal from normal state background and an anomalous depression of off-diagonal thermoelectric current in the normal state between TcT_{c} and 50 K are observed. We propose that this anomaly in the normal state Nernst effect could correlate with the SDW fluctuations.Comment: 8 pages, 4 figures; Latex file changed, references adde

    Crystal chemical simulation of superconductors on the basis of oxide and intermetallic layers

    Full text link
    Simulation of 'hybrid' superconductors of 3d-, 4d- and 5d-transition elements consisting of two different superconducting fragments located between positively charged ions planes - B'O2 oxide planes and B2C2 intermetallic layers - has been performed on the basis of the structure of Sr2Mn3As2O2 (A2(B2C2)(B'O2)). The oxide planes are similar to those of CuO2 in high-temperature superconducting cuprates while the intermetallic layers - to those of Ni2B2 in low-temperature superconducting borocarbides RNi2B2C and Fe2As2 layers in high-temperature superconducting oxypnictides RFeAsO1-xFx.Comment: Title changed by the Editor of Supercond. Sci. Technol., published versio

    Evidence for two distinct scales of current flow in polycrystalline Sm and Nd iron oxypnictides

    Full text link
    Early studies have found quasi-reversible magnetization curves in polycrystalline bulk rare-earth iron oxypnictides that suggest either wide-spread obstacles to intergranular current or very weak vortex pinning. In the present study of polycrystalline samarium and neodymium rare-earth iron oxypnictide samples made by high pressure synthesis, the hysteretic magnetization is significantly enhanced. Magneto optical imaging and study of the field dependence of the remanent magnetization as a function of particle size both show that global currents over the whole sample do exist but that the intergranular and intragranular current densities have distinctively different temperature dependences and differ in magnitude by about 1000. Assuming that the highest current density loops are restricted to circulation only within grains leads to values of ~5 MA/cm2 at 5 K and self field, while whole-sample current densities, though two orders of magnitude lower are 1000-10000 A/cm2, some two orders of magnitude higher than in random polycrystalline cuprates. We cannot yet be certain whether this large difference in global and intragrain current density is intrinsic to the oxypnictides or due to extrinsic barriers to current flow, because the samples contain significant second phase, some of which wets the grain boundaries and produces evidences of SNS proximity effect in the whole sample critical current.Comment: 28 pages, 14 figure

    X-ray absorption spectroscopy (XAS) investigation of the electronic structure of superconducting FeSex single crystals

    Get PDF
    X-ray absorption spectroscopy (XAS) Fe K-edge spectra of the FeSex (x=1-0.8) single crystals cleaved in situ in vacuum reveal characteristic Fe 4sp states, a lattice distortion and the Se K-edge spectra point to a strong Fe 3d-Se 4p hybridization giving rise to itinerant charge carriers. A formal charge of ~1.8+ for Fe and ~2.2- for Se were evaluated from these spectra in the FeSex (x=0.88). The charge balance between Fe and Se is assigned itinerant electrons located in the Fe-Se hybridization bond. As x decreases the 4p hole count increases and a crystal structure distortion is observed that in turn causes the Fe separation in the ab plane change from 4p orbital to varying (modulating) coordination. Powder x-ray diffraction (XRD) measurements also show a slight increase in lattice parameters as x decreases (increasing Se deficiency)
    corecore