32,742 research outputs found

    Fast Shocks From Magnetic Reconnection Outflows

    Full text link
    Magnetic reconnection is commonly perceived to drive flow and particle acceleration in flares of solar, stellar, and astrophysical disk coronae but the relative roles of different acceleration mecha- nisms in a given reconnection environment are not well understood. We show via direct numerical simulations that reconnection outflows produce weak fast shocks, when conditions for fast recon- nection are met and the outflows encounter an obstacle. The associated compression ratios lead to a Fermi acceleration particle spectrum that is significantly steeper than the strong fast shocks commonly studied, but consistent with the demands of solar flares. While this is not the only acceleration mechanism operating in a reconnection environment, it is plausibly a ubiquitous one

    Calculations on the Size Effects of Raman Intensities of Silicon Quantum Dots

    Get PDF
    Raman intensities of Si quantum dots (QDs) with up to 11,489 atoms (about 7.6 nm in diameter) for different scattering configurations are calculated. First, phonon modes in these QDs, including all vibration frequencies and vibration amplitudes, are calculated directly from the lattice dynamic matrix by using a microscopic valence force field model combined with the group theory. Then the Raman intensities of these quantum dots are calculated by using a bond-polarizability approximation. The size effects of the Raman intensity in these QDs are discussed in detail based on these calculations. The calculations are compared with the available experimental observation. We are expecting that our calculations can further stimulate more experimental measurements.Comment: 21 pages, 7 figure

    The branch processes of vortex filaments and Hopf Invariant Constraint on Scroll Wave

    Full text link
    In this paper, by making use of Duan's topological current theory, the evolution of the vortex filaments in excitable media is discussed in detail. The vortex filaments are found generating or annihilating at the limit points and encountering, splitting, or merging at the bifurcation points of a complex function Z(x,t)Z(\vec{x},t). It is also shown that the Hopf invariant of knotted scroll wave filaments is preserved in the branch processes (splitting, merging, or encountering) during the evolution of these knotted scroll wave filaments. Furthermore, it also revealed that the "exclusion principle" in some chemical media is just the special case of the Hopf invariant constraint, and during the branch processes the "exclusion principle" is also protected by topology.Comment: 9 pages, 5 figure

    Theory Summary and Future Directions

    Full text link
    Summary talk at the Lepton-Photon Symposium, Cornell University, Aug. 10-15, 1993.Comment: (Talk presented at the Lepton-Photon Symposium, Cornell University, Aug. 10-15, 1993.) 19 page

    Nuclear Polarization in Quantum Point Contacts in an In-Plane Magnetic Field

    Full text link
    Nuclear spin polarization is typically generated in GaAs quantum point contacts (QPCs) when an out-of-plane magnetic field gives rise to spin-polarized quantum Hall edge states, and a voltage bias drives transitions between the edge states via electron-nuclear flip-flop scattering. Here, we report a similar effect for QPCs in an in-plane magnetic field, where currents are spin polarized but edge states are not formed. The nuclear polarization gives rise to hysteresis in the d.c. transport characteristics, with relaxation timescales around 100 seconds. The dependence of anomalous QPC conductance features on nuclear polarization provides a useful test of their spin-sensitivity.Comment: 5 page

    Entropy Driven Dimerization in a One-Dimensional Spin-Orbital Model

    Full text link
    We study a new version of the one-dimensional spin-orbital model with spins S=1 relevant to cubic vanadates. At small Hund's coupling J_H we discover dimerization in a pure electronic system solely due to a dynamical spin-orbital coupling. Above a critical value J_H, a uniform ferromagnetic state is stabilized at zero temperature. More surprisingly, we observe a temperature driven dimerization of the ferrochain, which occurs due to a large entropy released by dimer states. This dynamical dimerization seems to be the mechanism driving the peculiar intermediate phase of YVO_3.Comment: 5 pages, 4 figure
    corecore