20,745 research outputs found

    Nonmagnetic Impurity Resonances as a Signature of Sign-Reversal Pairing in the FeAs-based Superconductors

    Full text link
    The low energy band structure of the FeAs based superconductors is fitted by a tight binding model with two Fe ions per unit cell and two degenerate orbitals per Fe ion. Based on this, superconductivity with extended s-wave pairing symmetry of the form coskx+cosky\cos k_x +\cos k_y is examined. The local density of states near an impurity is also investigated by using T-matrix approach. For the nonmagnetic scattering potential, we found that there exist two major resonances inside the gap. The height of the resonance peaks depends on the strength of the impurity potential. These in-gap resonances are originated in the Andreev's bound states due to the quasiparticle scattering between the hole Fermi surfaces around Γ\Gamma point with positive order parameter and the electron Fermi surfaces around MM point with negative order parameter.Comment: 5 pages, 5 figure

    Strong Correlations and Magnetic Frustration in the High Tc Iron Pnictides

    Full text link
    We consider the iron pnictides in terms of a proximity to a Mott insulator. The superexchange interactions contain competing nearest-neighbor and next-nearest-neighbor components. In the undoped parent compound, these frustrated interactions lead to a two-sublattice collinear antiferromagnet (each sublattice forming a Neel ordering), with a reduced magnitude for the ordered moment. Electron or hole doping, together with the frustration effect, suppresses the magnetic ordering and allows a superconducting state. The exchange interactions favor a d-wave superconducting order parameter; in the notation appropriate for the Fe square lattice, its orbital symmetry is dxyd_{xy}. A number of existing and future experiments are discussed in light of the theoretical considerations.Comment: (v2) 4+ pages, 4 figures, discussions on several points expanded; references added. To appear in Phys. Rev. Let

    Possibility of Unconventional Pairing Due to Coulomb Interaction in Fe-Based Pnictide Superconductors: Perturbative Analysis of Multi-Band Hubbard Models

    Full text link
    Possibility of unconventional pairing due to Coulomb interaction in iron-pnictide superconductors is studied by applying a perturbative approach to realistic 2- and 5-band Hubbard models. The linearized Eliashberg equation is solved by expanding the effective pairing interaction perturbatively up to third order in the on-site Coulomb integrals. The numerical results for the 5-band model suggest that the eigenvalues of the Eliashberg equation are sufficiently large to explain the actual high Tc for realistic values of Coulomb interaction and the most probable pairing state is spin-singlet s-wave without any nodes just on the Fermi surfaces, although the superconducting order parameter changes its sign between the small Fermi pockets. On the other hand the 2-band model is quite insufficient to explain the actual high Tc.Comment: 2 pages, 3 figures. Proceedings of the Intl. Symposium on Fe-Oxypnictide Superconductors (Tokyo, 28-29th June 2008

    Thorium-doping induced superconductivity up to 56 K in Gd1-xThxFeAsO

    Get PDF
    Following the discovery of superconductivity in an iron-based arsenide LaO1-xFxFeAs with a superconducting transition temperature (Tc) of 26 K[1], Tc was pushed up surprisingly to above 40 K by either applying pressure[2] or replacing La with Sm[3], Ce[4], Nd[5] and Pr[6]. The maximum Tc has climbed to 55 K, observed in SmO1-xFxFeAs[7, 8] and SmFeAsO1-x[9]. The value of Tc was found to increase with decreasing lattice parameters in LnFeAsO1-xFx (Ln stands for the lanthanide elements) at an apparently optimal doping level. However, the F- doping in GdFeAsO is particularly difficult[10,11] due to the lattice mismatch between the Gd2O2 layers and Fe2As2 layers. Here we report observation of superconductivity with Tc as high as 56 K by the Th4+ substitution for Gd3+ in GdFeAsO. The incorporation of relatively large Th4+ ions relaxes the lattice mismatch, hence induces the high temperature superconductivity.Comment: 4 pages, 3 figure

    Magnetic Excitations in the High Tc Iron Pnictides

    Get PDF
    We calculate the expected finite frequency neutron scattering intensity based on the two-sublattice collinear antiferromagnet found by recent neutron scattering experiments as well as by theoretical analysis on the iron oxypnictide LaOFeAs. We consider two types of superexchange couplings between Fe atoms: nearest-neighbor coupling J1 and next-nearest-neighbor coupling J2. We show how to distinguish experimentally between ferromagnetic and antiferromagnetic J1. Whereas magnetic excitations in the cuprates display a so-called resonance peak at (pi,pi) (corresponding to a saddlepoint in the magnetic spectrum) which is at a wavevector that is at least close to nesting Fermi-surface-like structures, no such corresponding excitations exist in the iron pnictides. Rather, we find saddlepoints near (pi,pi/2) and (0,pi/2)(and symmetry related points). Unlike in the cuprates, none of these vectors are close to nesting the Fermi surfaces.Comment: 4 pages, 5 figure

    Theory of the Magnetic Moment in Iron Pnictides

    Full text link
    We show that the combined effects of spin-orbit, monoclinic distortion, and p-d hybridization in tetrahedrally coordinated Fe in LaOFeAs invalidates the naive Hund's rule filling of the Fe d-levels. The two highest occupied levels have one electron each but as a result of the p-d hybridization have very different on-site repulsions. As a result, electrons in the upper level are more itinerant while those in the lower level are more localized. It is the xy-projection of the spin in the lower level that orders antiferromagnetically as the z-components of the spins in the two levels is shown to be vanishingly small in the ground state. The resulting magnetic moment is highly anisotropic with an in-plane value of 0.250.35μB0.25-0.35\mu_B per Fe and a z-projection of 0.06μB0.06\mu_B, both of which are in agreement with experiment. As a consequence, we arrive the minimal model that describes the electronic properties of LaOFeAs.Comment: Published Versio

    Wilson Fermions on a Randomly Triangulated Manifold

    Get PDF
    A general method of constructing the Dirac operator for a randomly triangulated manifold is proposed. The fermion field and the spin connection live, respectively, on the nodes and on the links of the corresponding dual graph. The construction is carried out explicitly in 2-d, on an arbitrary orientable manifold without boundary. It can be easily converted into a computer code. The equivalence, on a sphere, of Majorana fermions and Ising spins in 2-d is rederived. The method can, in principle, be extended to higher dimensions.Comment: 18 pages, latex, 6 eps figures, fig2 corrected, Comment added in the conclusion sectio

    Superconductivity in heavily boron-doped silicon carbide

    Full text link
    The discoveries of superconductivity in heavily boron-doped diamond (C:B) in 2004 and silicon (Si:B) in 2006 renew the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily-boron doped silicon carbide (SiC:B). The sample used for that study consists of cubic and hexagonal SiC phase fractions and hence this lead to the question which of them participates in the superconductivity. Here we focus on a sample which mainly consists of hexagonal SiC without any indication for the cubic modification by means of x-ray diffraction, resistivity, and ac susceptibility.Comment: 9 pages, 5 figure
    corecore