17 research outputs found

    Prognostic significance of nuclear expression of UMP-CMP kinase in triple negative breast cancer patients

    Get PDF
    We have previously identified UMP-CMP kinase (CMPK1) as a prognostic marker for triple negative breast cancer (TNBC) by mass spectrometry (MS). In this study we evaluated CMPK1 association to prognosis in an independent set of samples by immunohistochemistry (IHC) and assessed biological pathways associated to its expression through gene set enrichment analysis (GSEA). A total of 461 TNBC paraffin-embedded tissues were collected from different academic hospitals in Europe, incorporated into tissue micro-arrays (TMA), and stained for CMPK1 expression. We also collected gene expression data of 60 samples, which were also present in the TMA, for GSEA correlation analysis. CMPK1 IHC staining showed both cytoplasmic and nuclear components. While cytoplasmic CMPK1 did not show any association to metastasis free survival (MFS), nuclear CMPK1 was associated to poor prognosis independently from other prognostic factors in stratified Cox regression analyses. GSEA correlation analysis of the nuclear CMPK1-stratified gene expression dataset showed a significant enrichment of extracellular matrix (ECM; positive correlation) and cell cycle (negative correlation) associated genes. We have shown here that nuclear CMPK1 is indicative of poor prognosis in TNBCs and that its expression may be related to dysregulation of ECM and cell cycle molecules

    Loss of Y-Chromosome during Male Breast Carcinogenesis

    Get PDF
    Loss of Y-chromosome (LOY) is associated with increased cancer mortality in males. The prevalence of LOY in male breast cancer (BC) is unknown. The aim of this study is to assess the presence and prognostic effect of LOY during male BC progression. We included male BC patients diagnosed between 1989 and 2009 (n = 796). A tissue microarray (TMA) was constructed to perform immunohistochemistry and fluorescent in situ hybridization (FISH), using an X and Y probe. We also performed this FISH on a selected number of patients using whole tissue slides to study LOY during progression from ductal carcinoma in situ (DCIS) to invasive BC. In total, LOY was present in 12.7% (n = 92) of cases, whereby LOY was associated with ER and PR negative tumors (p = 0.017 and p = 0.01). LOY was not associated with the outcome. Using whole slides including invasive BC and adjacent DCIS (n = 22), we detected a concordant LOY status between both components in 17 patients. In conclusion, LOY is an early event in male breast carcinogenesis, which generally starts at the DCIS stage and is associated with ER and PR negative tumors

    Expression and Localization of Ferritin-Heavy Chain Predicts Recurrence for Breast Cancer Patients with a <i>BRCA1/2</i> Mutation

    Get PDF
    The ferritin-heavy chain (FTH1) is the catalytic subunit of the ferroxidase ferritin, which prevents oxidative DNA damage via intracellular iron storage. FTH1 was shown to be a prognostic marker for triple-negative breast cancer (BC) patients and associated with an enrichment of CD8+ effector T cells. However, whether the expression and localization of FTH1 are also associated with clinical outcome in other BC subtypes is unknown. Here, we investigated the association of FTH1 with time to survival in BCs from 222 BRCA1/2 mutation carriers by immunohistochemistry on tissue microarrays. In addition, for 51 of these patients, the association between FTH1 and specific subsets of T cells was evaluated on whole slides using automatic scoring algorithms. We revealed that nuclear FTH1 (nFTH1) expression, in multivariable analyses, was associated with a shorter disease-free (HR = 2.71, 95% CI = 1.49–4.92, p = 0.001) and metastasis-free survival (HR = 3.54, 95% CI = 1.45–8.66, p = 0.006) in patients carrying a BRCA1/2 mutation. However, we found no relation between cytoplasmic FTH1 expression and survival of BRCA1/2 mutation carriers. Moreover, we did not detect an association between FTH1 expression and the amount of CD45+ (p = 0.13), CD8+ (p = 0.18), CD4+ (p = 0.20) or FOXP3+ cells (p = 0.17). Consequently, the mechanism underlying the worse recurrence-free survival of nFTH1 expression in BRCA1/2 mutation carriers needs further investigation.</p

    The Prevalence of CD146 Expression in Breast Cancer Subtypes and Its Relation to Outcome

    Get PDF
    CD146, involved in epithelial-to-mesenchymal transition (EMT), might affect cancer aggressiveness. We here investigated the prevalence of CD146 expression in breast cancer subtypes, its relation to prognosis, the relation between CD146 and EMT and the outcome to tamoxifen. Primary breast cancer tissues from 1342 patients were available for this retrospective study and immunohistochemically stained for CD146. For survival analyses, pure prognosis was studied by only including lymph-node negative patients who did not receive (neo)adjuvant systemic treatment (n = 551). 11% of the tumors showed CD146 expression. CD146 expression was most prevalent in triple-negative cases (64%, p < 0.001). In univariable analysis, CD146 expression was a prognostic factor for both metastasis-free survival (MFS) (p = 0.020) and overall survival (OS) (p = 0.037), but not in multivariable analysis (including age, tumor size, grade, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and Ki-67). No correlation between CD146 and EMT nor difference in outcome to first-line tamoxifen was seen. In this large series, our data showed that CD146 is present in primary breast cancer and is a pure prognostic factor for MFS and OS in breast cancer patients. We did not see an association between CD146 expression and EMT nor on outcome to tamoxifen

    Detection of circulating tumor cells in breast cancer may improve through enrichment with anti-CD146

    Full text link
    Most assays to detect circulating tumor cells (CTCs) rely on EpCAM expression on tumor cells. Recently, our group reported that in contrast to other molecular breast cancer subtypes, "normal-like" cell lines lack EpCAM expression and are thus missed when CTCs are captured with EpCAM-based technology [J Natl Cancer Inst 101(1):61-66, 2009]. Here, the use of CD146 is introduced to detect EpCAM-negative CTCs, thereby improving CTC detection. CD146 and EpCAM expression were assessed in our panel of 41 breast cancer cell lines. Cells from 14 cell lines, 9 of which normal-like, were spiked into healthy donor blood. Using CellSearch (TM) technology, 7.5 ml whole blood was enriched for CTCs by adding ferrofluids loaded with antibodies against EpCAM and/or CD146 followed by staining for Cytokeratin and DAPI. Hematopoietic cells and circulating endothelial cells (CECs) were counterstained with CD45 and CD34, respectively. A similar approach was applied for blood samples of 20 advanced breast cancer patients. Eight of 9 normal-like breast cancer cell lines lacked EpCAM expression but did express CD146. Five of these 8 could be adequately recovered by anti-CD146 ferrofluids. Of 20 advanced breast cancer patients whose CTCs were enumerated with anti-EpCAM and anti-CD146 ferrofluids, 9 had CD146+ CTCs. Cells from breast cancer cell lines that lack EpCAM expression frequently express CD146 and can be recovered by anti-CD146 ferrofluids. CD146+ CTCs are present in the peripheral blood of breast cancer patients with advanced disease. Combined use of anti-CD146 and anti-EpCAM is likely to improve CTC detection in breast cancer patients

    Detection of circulating tumor cells in breast cancer may improve through enrichment with anti-CD146

    No full text
    Most assays to detect circulating tumor cells (CTCs) rely on EpCAM expression on tumor cells. Recently, our group reported that in contrast to other molecular breast cancer subtypes, "normal-like" cell lines lack EpCAM expression and are thus missed when CTCs are captured with EpCAM-based technology [J Natl Cancer Inst 101(1):61-66, 2009]. Here, the use of CD146 is introduced to detect EpCAM-negative CTCs, thereby improving CTC detection. CD146 and EpCAM expression were assessed in our panel of 41 breast cancer cell lines. Cells from 14 cell lines, 9 of which normal-like, were spiked into healthy donor blood. Using CellSearch (TM) technology, 7.5 ml whole blood was enriched for CTCs by adding ferrofluids loaded with antibodies against EpCAM and/or CD146 followed by staining for Cytokeratin and DAPI. Hematopoietic cells and circulating endothelial cells (CECs) were counterstained with CD45 and CD34, respectively. A similar approach was applied for blood samples of 20 advanced breast cancer patients. Eight of 9 normal-like breast cancer cell lines lacked EpCAM expression but did express CD146. Five of these 8 could be adequately recovered by anti-CD146 ferrofluids. Of 20 advanced breast cancer patients whose CTCs were enumerated with anti-EpCAM and anti-CD146 ferrofluids, 9 had CD146+ CTCs. Cells from breast cancer cell lines that lack EpCAM expression frequently express CD146 and can be recovered by anti-CD146 ferrofluids. CD146+ CTCs are present in the peripheral blood of breast cancer patients with advanced disease. Combined use of anti-CD146 and anti-EpCAM is likely to improve CTC detection in breast cancer patients

    Ferritin heavy chain in triple negative breast cancer: A favorable prognostic marker that relates to a cluster of differentiation 8 positive (CD8+) effector t-cell response

    No full text
    Ferritin heavy chain (FTH1) is a 21-kDa subunit of the ferritin complex, known for its role in iron metabolism, and which has recently been identified as a favorable prognostic protein for triple negative breast cancer (TNBC) patients. Currently, it is not well understood how FTH1 contributes to an anti-tumor response. Here, we explored whether expression and cellular compartmentalization of FTH1 correlates to an effective immune response in TNBC patients. Analysis of the tumor tissue transcriptome, complemented with in silico pathway analysis, revealed that FTH1 was an integral part of an immunomodulatory network of cytokine signaling, adaptive immunity, and cell death. These findings were confirmed using mass spectrometry (MS)-derived proteomic data, and immunohistochemical staining of tissue microarrays. We observed that FTH1 is localized in both the cytoplasm and/or nucleus of cancer cells. However, high cytoplasmic (c) FTH1 was associated with favorable prognosis (Log-rank p = 0.001), whereas nuclear (n) FTH1 staining was associated with adverse prognosis (Log-rank p = 0.019). cFTH1 staining significantly correlated with total FTH1 expression in TNBC tissue samples, as measure
    corecore