221,779 research outputs found
Microscopic interface phonon modes in structures of GaAs quantum dots embedded in AlAs shells
By means of a microscopic valence force field model, a series of novel
microscopic interface phonon modes are identified in shell quantum dots(SQDs)
composed of a GaAs quantum dot of nanoscale embedded in an AlAs shell of a few
atomic layers in thickness. In SQDs with such thin shells, the basic principle
of the continuum dielectric model and the macroscopic dielectric function are
not valid any more. The frequencies of these microscopic interface modes lie
inside the gap between the bulk GaAs band and the bulk AlAs band, contrary to
the macroscopic interface phonon modes. The average vibrational energies and
amplitudes of each atomic shell show peaks at the interface between GaAs and
AlAs. These peaks decay fast as their penetrating depths from the interface
increase.Comment: 13 pages, 4 figure
Current Dissipation in Thin Superconducting Wires: Accurate Numerical Evaluation Using the String Method
Current dissipation in thin superconducting wires is numerically evaluated by
using the string method, within the framework of time-dependent Ginzburg-Landau
equation with a Langevin noise term. The most probable transition pathway
between two neighboring current-carrying metastable states, continuously
linking the Langer-Ambegaokar saddle-point state to a state in which the order
parameter vanishes somewhere, is found numerically. We also give a numerically
accurate algorithm to evaluate the prefactors for the rate of current-reducing
transitions.Comment: 25 pages, 5 figure
Greening Multi-Tenant Data Center Demand Response
Data centers have emerged as promising resources for demand response,
particularly for emergency demand response (EDR), which saves the power grid
from incurring blackouts during emergency situations. However, currently, data
centers typically participate in EDR by turning on backup (diesel) generators,
which is both expensive and environmentally unfriendly. In this paper, we focus
on "greening" demand response in multi-tenant data centers, i.e., colocation
data centers, by designing a pricing mechanism through which the data center
operator can efficiently extract load reductions from tenants during emergency
periods to fulfill energy reduction requirement for EDR. In particular, we
propose a pricing mechanism for both mandatory and voluntary EDR programs,
ColoEDR, that is based on parameterized supply function bidding and provides
provably near-optimal efficiency guarantees, both when tenants are price-taking
and when they are price-anticipating. In addition to analytic results, we
extend the literature on supply function mechanism design, and evaluate ColoEDR
using trace-based simulation studies. These validate the efficiency analysis
and conclude that the pricing mechanism is both beneficial to the environment
and to the data center operator (by decreasing the need for backup diesel
generation), while also aiding tenants (by providing payments for load
reductions).Comment: 34 pages, 6 figure
On the square-free number sequence
The main purpose of this paper is to study the number of the square-free number sequence, and give two interesting asymptotic formulas for it. At last, give another asymptotic formula and a corollary
- …